Página 1 dos resultados de 52 itens digitais encontrados em 0.001 segundos

Análise do número de grupos em bases de dados incompletas utilizando agrupamentos nebulosos e reamostragem Bootstrap; Analysis the number of clusters present in incomplete datasets using a combination of the fuzzy clustering and resampling bootstrapping

Milagre, Selma Terezinha
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 18/07/2008 Português
Relevância na Pesquisa
36.68%
A técnica de agrupamento de dados é amplamente utilizada em análise exploratória, a qual é frequentemente necessária em diversas áreas de pesquisa tais como medicina, biologia e estatística, para avaliar potenciais hipóteses a serem utilizadas em estudos subseqüentes. Em bases de dados reais, a ocorrência de dados incompletos, nos quais os valores de um ou mais atributos do dado são desconhecidos, é bastante comum. Este trabalho apresenta um método capaz de identificar o número de grupos presentes em bases de dados incompletas, utilizando a combinação das técnicas de agrupamentos nebulosos e reamostragem bootstrap. A qualidade da classificação é baseada em medidas de comparação tradicionais como F1, Classificação Cruzada, Hubert e outras. Os estudos foram feitos em oito bases de dados. As quatro primeiras são bases de dados artificiais, a quinta e a sexta são a wine e íris. A sétima e oitava bases são formadas por uma coleção brasileira de 119 estirpes de Bradyrhizobium. Para avaliar toda informação sem introduzir estimativas, fez-se a modificação do algoritmo Fuzzy C-Means (FCM) utilizando-se um vetor de índices de atributos, os quais indicam onde o valor de um atributo é observado ou não, modificando-se ento...

Análise de dados por meio de agrupamento fuzzy semi-supervisionado e mineração de textos; Data analysis using semisupervised fuzzy clustering and text mining

Medeiros, Debora Maria Rossi de
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 08/12/2010 Português
Relevância na Pesquisa
56.75%
Esta Tese apresenta um conjunto de técnicas propostas com o objetivo de aprimorar processos de Agrupamento de Dados (AD). O principal objetivo é fornecer à comunidade científica um ferramental para uma análise completa de estruturas implícitas em conjuntos de dados, desde a descoberta dessas estruturas, permitindo o emprego de conhecimento prévio sobre os dados, até a análise de seu significado no contexto em que eles estão inseridos. São dois os pontos principais desse ferramental. O primeiro se trata do algoritmo para AD fuzzy semi-supervisionado SSL+P e sua evolução SSL+P*, capazes de levar em consideração o conhecimento prévio disponível sobre os dados em duas formas: rótulos e níveis de proximidade de pares de exemplos, aqui denominados Dicas de Conhecimento Prévio (DCPs). Esses algoritmos também permitem que a métrica de distância seja ajustada aos dados e às DCPs. O algoritmo SSL+P* também busca estimar o número ideal de clusters para uma determinada base de dados, levando em conta as DCPs disponíveis. Os algoritmos SSL+P e SSL+P* envolvem a minimização de uma função objetivo por meio de um algoritmo de Otimização Baseado em População (OBP). Esta Tese também fornece ferramentas que podem ser utilizadas diretamente neste ponto: as duas versões modificadas do algoritmo Particle Swarm Optimization (PSO)...

Agrupamento de dados fuzzy colaborativo; Collaborative fuzzy clustering

Coletta, Luiz Fernando Sommaggio
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 19/05/2011 Português
Relevância na Pesquisa
46.93%
Nas últimas décadas, as técnicas de mineração de dados têm desempenhado um importante papel em diversas áreas do conhecimento humano. Mais recentemente, essas ferramentas têm encontrado espaço em um novo e complexo domínio, nbo qual os dados a serem minerados estão fisicamente distribuídos. Nesse domínio, alguns algorithmos específicos para agrupamento de dados podem ser utilizados - em particular, algumas variantes do algoritmo amplamente Fuzzy C-Means (FCM), as quais têm sido investigadas sob o nome de agrupamento fuzzy colaborativo. Com o objetivo de superar algumas das limitações encontradas em dois desses algoritmos, cinco novos algoritmos foram desenvolvidos nesse trabalho. Esses algoritmos foram estudados em dois cenários específicos de aplicação que levam em conta duas suposições sobre os dados (i.e., se os dados são de uma mesma npopulação ou de diferentes populações). Na prática, tais suposições e a dificuldade em se definir alguns dos parâmetros (que possam ser requeridos), podemn orientar a escolha feita pelo usuário entre os algoitmos diponíveis. Nesse sentido, exemplos ilustrativos destacam as diferenças de desempenho entre os algoritmos estudados e desenvolvidos, permitindo derivar algumas conclusões que podem ser úteis ao aplicar agrupamento fuzzy colaborativo na prática. Análises de complexidade de tempo...

Estudo e desenvolvimento de algoritmos para agrupamento fuzzy de dados em cenários centralizados e distribuídos; Study and development of fuzzy clustering algorithms in centralized and distributed scenarios

Vendramin, Lucas
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 05/07/2012 Português
Relevância na Pesquisa
57.04%
Agrupamento de dados é um dos problemas centrais na áea de mineração de dados, o qual consiste basicamente em particionar os dados em grupos de objetos mais similares (ou relacionados) entre si do que aos objetos dos demais grupos. Entretanto, as abordagens tradicionais pressupõem que cada objeto pertence exclusivamente a um único grupo. Essa hipótese não é realista em várias aplicações práticas, em que grupos de objetos apresentam distribuições estatísticas que possuem algum grau de sobreposição. Algoritmos de agrupamento fuzzy podem lidar naturalmente com problemas dessa natureza. A literatura sobre agrupamento fuzzy de dados é extensa, muitos algoritmos existem atualmente e são mais (ou menos) apropriados para determinados cenários, por exemplo, na procura por grupos que apresentam diferentes formatos ou ao operar sobre dados descritos por conjuntos de atributos de tipos diferentes. Adicionalmente, existem cenários em que os dados podem estar distribuídos em diferentes locais (sítios de dados). Nesses cenários o objetivo de um algoritmo de agrupamento de dados consiste em encontrar uma estrutura que represente os dados existentes nos diferentes sítios sem a necessidade de transmissão e armazenamento/processamento centralizado desses dados. Tais algoritmos são denominados algoritmos de agrupamento distribuído de dados. O presente trabalho visa o estudo e aperfeiçoamento de algoritmos de agrupamento fuzzy centralizados e distribuídos existentes na literatura...

Organização flexível de documentos; Flexible organization of documents

Rios, Tatiane Nogueira
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 25/03/2013 Português
Relevância na Pesquisa
47.17%
Diversos métodos têm sido desenvolvidos para a organização da crescente quantidade de documentos textuais. Esses métodos frequentemente fazem uso de algoritmos de agrupamento para organizar documentos que referem-se a um mesmo assunto em um mesmo grupo, supondo que conteúdos de documentos de um mesmo grupo são similares. Porém, existe a possibilidade de que documentos pertencentes a grupos distintos também apresentem características semelhantes. Considerando esta situação, há a necessidade de desenvolver métodos que possibilitem a organização flexível de documentos, ou seja, métodos que possibilitem que documentos sejam organizados em diferentes grupos com diferentes graus de compatibilidade. O agrupamento fuzzy de documentos textuais apresenta-se como uma técnica adequada para este tipo de organização, uma vez que algoritmos de agrupamento fuzzy consideram que um mesmo documento pode ser compatível com mais de um grupo. Embora tem-se desenvolvido algoritmos de agrupamento fuzzy que possibilitam a organização flexível de documentos, tal organização é avaliada em termos do desempenho do agrupamento de documentos. No entanto, considerando que grupos de documentos devem possuir descritores que identifiquem adequadamente os tópicos representados pelos mesmos...

Um estudo sobre agrupamento de documentos textuais em processamento de informações não estruturadas usando técnicas de "clustering"; A study about arrangement of textual documents applied to unstructured information processing using clustering techniques

Wives, Leandro Krug
Fonte: Universidade Federal do Rio Grande do Sul Publicador: Universidade Federal do Rio Grande do Sul
Tipo: Dissertação Formato: application/pdf
Português
Relevância na Pesquisa
36.69%
Atualmente, técnicas de recuperação e análise de informações, principalmente textuais, são de extrema importância. Após o grande BOOM da Internet, muitos problemas que já eram conhecidos em contextos fechados passaram a preocupar também toda a comunidade científica. No âmbito deste trabalho os problemas relacionados à sobrecarga de informações, que ocorre devido ao grande volume de dados a disposição de uma pessoa, são os mais importantes. Visando minimizar estes problemas, este trabalho apresenta um estudo sobre métodos de agrupamento de objetos textuais (documentos no formato ASCII), onde os objetos são organizados automaticamente em grupos de objetos similares, facilitando sua localização, manipulação e análise. Decorrente deste estudo, apresenta-se uma metodologia de aplicação do agrupamento descrevendo-se suas diversas etapas. Estas etapas foram desenvolvidas de maneira que após uma ter sido realizada ela não precisa ser refeita, permitindo que a etapa seguinte seja aplicada diversas vezes sobre os mesmos dados (com diferentes parâmetros) de forma independente. Além da metodologia, realiza-se um estudo comparativo entre alguns algoritmos de agrupamento, inclusive apresentando-se um novo algoritmo mais eficiente. Este fato é comprovado em experimentos realizados nos diversos estudos de caso propostos. Outras contribuições deste trabalho incluem a implementação de uma ferramenta de agrupamento de textos que utiliza a metodologia elaborada e os algoritmos estudados; além da utilização de uma fórmula não convencional de cálculo de similaridades entre objetos (de abordagem fuzzy)...

Redes neurais, metodologias de agrupamento e combinação de previsores aplicados a previsão de vazões naturais

Marina Hirota Magalhães
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 12/11/2004 Português
Relevância na Pesquisa
36.61%
Planejamento de sistemas hidroeletricos possui um alto grau de complexidade e dificuldade, uma vez que involve características de produção não lineares e depende de muitas variaveis. Um das variaveis chave e a vazão natural. Os valores de vazões devem ser previstos com acuracia, uma vez que esses valores influenciam significativamente na produção de energia. Atualmente, no setor de geração hidroeletrica, a previsão de vazões e baseada na metodologia de Box & Jenkins. Este trabalho propõe um modelo de previsão baseado em agrupamento nebuloso como alternativa para a previsão de vazões naturais medias mensais. O modelo utiliza o algoritmo de agrupamento fuzzy c-means para explorar a estrutura dos dados historicos, e procedimentos de mediana e reconhecimento de padrões para capturar similaridades na tendencia das series. Ainda, este trabalho sugere um modelo que combina previsões geradas por um conjunto de metodos individuais de previsão, de uma maneira simples, mas efetiva. Utiliza-se, como combinador, uma rede neural treinada com o algoritmo do gradiente. O objetivo e combinar as previsões geradas por diferentes modelos na tentativa de capturar as contribuições das características de previão mais importantes de cada previsor individual. Esse metodo tambem e aplicado a previsão de series de vazões naturais medias mensais escolhendo-se...

Modelagem fuzzy funcional evolutiva participativa; Evolving participatory learning fuzzy modeling

Elton Mario de Lima
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 04/07/2008 Português
Relevância na Pesquisa
36.95%
Este trabalho propõe um modelo fuzzy funcional evolutivo que utiliza uma aplicação do aprendizado participativo para a construção de uma base de regras. O aprendizado participativo é um modelo de aprendizado baseado na noção de compatibilidade para a atualização do conhecimento do sistema. O aprendizado participativo pode ser traduzido em um algoritmo de agrupamento não supervisionado conhecido como agrupamento participativo. O algoritmo intitulado Aprendizado Participativo Evolutivo é proposto para construir um modelo fuzzy funcional evolutivo no qual as regras são obtidas a partir de um algoritmo de agrupamento não supervisionado. O algoritmo utiliza uma versão do agrupamento participativo para a determinação de uma base de regras correspondente ao modelo funcional do tipo Takagi-Sugeno evolutivo. A partir de uma noção generalizada, o modelo proposto é aplicado em problemas de previsão de séries temporais e os resultados são obtidos para a conhecida série Box-Jenkis, além da previsão de uma série de carga horária de energia elétrica. Os resultados são comparados com o modelo Takagi-Sugeno evolutivo que utiliza a noção de função potencial para agrupar os dados dinâmicamente e com duas abordagens baseadas em redes neurais. Os resultados mostram que o modelo proposto é eficiente e parcimonioso...

Modelagem de sistemas não-lineares por base de funções ortonormais generalizadas com funções internas; Nonlinear sytems modeling based on ladder-strutured generalized orthonormal basis functions

Jeremias Barbosa Machado
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 24/02/2011 Português
Relevância na Pesquisa
36.53%
Este trabalho enfoca a modelagem e identificação de sistemas dinâmicos não-lineares estáveis através de modelos fuzzy Takagi-Sugeno (TS) e/ou Volterra, ambos com estruturas formadas por bases de funções ortonormais (BFO), principalmente as bases de funções ortonormais generalizadas (GOBF - Generalized Orthonormal Basis Functions) com funções internas. As GOBF’s com funções internas modelam sistemas dinâmicos com múltiplos modos através de uma parametrização que utiliza somente valores reais, sejam os polos do sistema reais e/ou complexos. Uma das principais contribuições desta tese concentra-se na proposta da otimização e ajuste fino dos parâmetros destes modelos não-lineares. Realiza-se a identificação dos modelos fuzzy TS-BFO utilizando-se de medidas dos sinais de entrada e saída do sistema a ser modelado. Os modelos fuzzy TS-BFO são inicialmente determinados utilizando-se uma técnica de agrupamento fuzzy (fuzzy clustering) e simplificados por algoritmos que eliminam eventuais redundâncias. Em sequência desenvolve-se o cálculo analítico dos gradientes da saída do modelo TS-BFO em relação aos parâmetros do modelo (polos da BFO, coeficientes da expansão da BFO e parâmetros das funções de pertinência). Utilizando-se técnicas de otimização não-linear e o valor dos gradientes...

Fuzzy clustering não supervisionado na detecção automática de regiões de upwelling a partir de mapas de temperatura da superfície oceânica

Franco, Pedro Guerra de Almeida
Fonte: FCT - UNL Publicador: FCT - UNL
Tipo: Dissertação de Mestrado
Publicado em //2009 Português
Relevância na Pesquisa
36.71%
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática; O afloramento costeiro (upwelling) ao largo da costa de Portugal Continental é um fenómeno bem estudado na literatura oceanográfica. No entanto, existem poucos trabalhos na literatura científica sobre a sua detecção automática, em particular utilizando técnicas de clustering. Algoritmos de agrupamento difuso (fuzzy clustering) têm sido bastante explorados na área de detecção remota e segmentação de imagem, e investigação recente mostrou que essas técnicas conseguem resultados promissores na detecção do upwelling a partir de mapas de temperatura da superfície do oceano, obtidos por imagens de satélite. No trabalho a desenvolver nesta dissertação, propõe-se definir um método que consiga identificar automaticamente a região que define o fenómeno. Como objecto de estudo, foram analisados dois conjuntos independentes de mapas de temperatura, num total de 61 mapas, cobrindo a diversidade de cenários em que o upwelling ocorre. Focando o domínio do problema, foi desenvolvido trabalho de pesquisa bibliográfica ao nível de literatura de referência e estudos mais recentes...

Um novo algoritmo de agrupamento semisupervisionado baseado no Fuzzy C-Means

Macario Filho, Valmir; de Assis Tenório Carvalho, Francisco (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
Português
Relevância na Pesquisa
46.79%
Nas aplicações tradicionais de aprendizagem de máquina, os classificadores utilizam apenas dados rotulados em seu treinamento. Os dados rotulados, por sua vez, são difíceis, caros, consomem tempo e requerem especialistas humanos para serem obtidos em algumas aplicações reais. Entretanto, dados não rotulados são abundantes e fáceis de serem obtidos mas há poucas abordagens que os utilizam no treinamento. Para contornar esse problema existe a aprendizagem semi-supervisionada. A aprendizagem semi-supervisionada utiliza uma grande quantidade de dados não rotulados, juntamente com dados rotulados, com a finalidade de construir classificadores melhores. A abordagem semi-supervisionada obtém resultados melhores do que se utilizassem apenas poucos padrões rotulados em uma abordagem supervisionada ou se utilizassem apenas padrões não rotulados numa abordagem não supervisionada. O algoritmo semi-supervisionado pode ser uma extensão de um algoritmo não supervisionado. Um algoritmo desse tipo pode se basear em algoritmos de agrupamento não supervisionado, adicionando-se um termo em sua função objetivo que faz uso de informações rotuladas para guiar o processo de aprendizagem do algoritmo. Este trabalho apresenta um estudo da aprendizagem semi-supervisionada e apresenta um novo algoritmo de agrupamento semi-supervisionado baseado no algoritmo Fuzzy C-Means. Também...

Clusterização baseada em algoritmos fuzzy

Lopes Cavalcanti Junior, Nicomedes; de Assis Tenório Carvalho, Francisco (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
Português
Relevância na Pesquisa
36.5%
Análise de cluster é uma técnica aplicada a diversas áreas como mineração de dados, reconhecimento de padrões, processamento de imagens. Algoritmos de clusterização têm por objetivo particionar um conjunto de dados em clusters de tal forma que indivíduos dentro de um mesmo cluster tenham um alto grau de similaridade, enquanto indivíduos pertencentes a diferentes clusters tenham alto grau de dissimilaridade. Uma importante divisão dos algoritmos de clusterização é entre algoritmos hard e fuzzy. Algoritmos hard associam um indivíduo a somente um cluster. Ao contrário, algoritmos fuzzy associam um indivíduo a todos os clusters através da variação do grau de pertinência do indivíduo em cada cluster. A vantagem de um algoritmo clusterização fuzzy é que este pode representar melhor incerteza e este fato é importante, por exemplo, para mostrar que um indivíduo não é um típico indivíduo de nenhuma das classes, mas tem similaridade em maior ou menor grau com mais de uma classe. Uma forma intuitiva de medir similaridade entre indivíduos é usar medidas de distância tais como a distância euclidiana. Existem muitas medidas de distância disponíveis na literatura. Muitos dos algoritmos de clusterização populares geralmente buscam minimizar um critério baseados numa medida de distância. Através de um processo iterativo estes algoritmos calculam parâmetros de modo a diminuir o valor do critério iteração a iteração até um estado de convergência ser atingido. O problema com muitas das distâncias encontradas na literatura é que elas são estáticas. Para o caso de algoritmos de clusterização iterativos...

Métodos robustos em análise de agrupamento para dados simbólicos

Cristina de Assis, Elaine; Maria Cardoso Rodrigues de Souza, Renata (Orientador)
Fonte: Universidade Federal de Pernambuco Publicador: Universidade Federal de Pernambuco
Tipo: Outros
Português
Relevância na Pesquisa
36.49%
Análise de agrupamento (cluster analysis) visa organizar um conjunto de itens em grupos tal que os itens em um dado grupo têm alto grau de similaridade, enquanto itens pertencentes a grupos diferentes têm um alto grau de dissimilaridade. Técnicas de análise de agrupamento podem ser divididas em hierárquicas e de particionamento. Métodos hierárquicos formam seqüências de partições dos dados de entrada gerando assim hierarquias completas, enquanto métodos de particionamento procuram obter uma simples partição dos dados de entrada em um número fixo de grupos. Em geral esses métodos são divididos em dois grupos de paradigmas: rígido (hard) e difuso/nebuloso (fuzzy). Os algoritmos rígidos associam um item a apenas um grupo, enquanto os algoritmos difusos/nebulosos associam um item a todos os grupos através de um grau de pertinência do item em cada grupo. Os algoritmos de agrupamento baseados em medoid são conhecidos por serem menos sensíveis na presença de observações aberrantes/ruídos. Adicionalmente, esses algoritmos são mais flexíveis uma vez que a entrada de dados é uma matriz de dissimilaridade. A fim de modelar variabilidade e/ou incerteza inerente aos dados, variáveis podem assumir conjuntos de categorias ou intervalos...

Uma nova forma de calcular os centros dos Clusters em algoritmos de agrupamento tipo fuzzy c-means

Vargas, Rogerio Rodrigues de
Fonte: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Sistemas e Computação; Ciência da Computação Publicador: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Sistemas e Computação; Ciência da Computação
Tipo: Tese de Doutorado Formato: application/pdf
Português
Relevância na Pesquisa
36.81%
Clustering data is a very important task in data mining, image processing and pattern recognition problems. One of the most popular clustering algorithms is the Fuzzy C-Means (FCM). This thesis proposes to implement a new way of calculating the cluster centers in the procedure of FCM algorithm which are called ckMeans, and in some variants of FCM, in particular, here we apply it for those variants that use other distances. The goal of this change is to reduce the number of iterations and processing time of these algorithms without affecting the quality of the partition, or even to improve the number of correct classifications in some cases. Also, we developed an algorithm based on ckMeans to manipulate interval data considering interval membership degrees. This algorithm allows the representation of data without converting interval data into punctual ones, as it happens to other extensions of FCM that deal with interval data. In order to validate the proposed methodologies it was made a comparison between a clustering for ckMeans, K-Means and FCM algorithms (since the algorithm proposed in this paper to calculate the centers is similar to the K-Means) considering three different distances. We used several known databases. In this case...

Novos métodos determinísticos para gerar centros iniciais dos grupos no algoritmo fuzzy C-Means e variantes

Arnaldo, Heloína Alves
Fonte: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Sistemas e Computação; Ciência da Computação Publicador: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Sistemas e Computação; Ciência da Computação
Tipo: Dissertação Formato: application/pdf
Português
Relevância na Pesquisa
46.95%
Data clustering is applied to various fields such as data mining, image processing and pattern recognition technique. Clustering algorithms splits a data set into clusters such that elements within the same cluster have a high degree of similarity, while elements belonging to different clusters have a high degree of dissimilarity. The Fuzzy C-Means Algorithm (FCM) is a fuzzy clustering algorithm most used and discussed in the literature. The performance of the FCM is strongly affected by the selection of the initial centers of the clusters. Therefore, the choice of a good set of initial cluster centers is very important for the performance of the algorithm. However, in FCM, the choice of initial centers is made randomly, making it difficult to find a good set. This paper proposes three new methods to obtain initial cluster centers, deterministically, the FCM algorithm, and can also be used in variants of the FCM. In this work these initialization methods were applied in variant ckMeans.With the proposed methods, we intend to obtain a set of initial centers which are close to the real cluster centers. With these new approaches startup if you want to reduce the number of iterations to converge these algorithms and processing time without affecting the quality of the cluster or even improve the quality in some cases. Accordingly...

Algoritmos de agrupamentos fuzzy intervalares e índice de validação para agrupamento de dados simbólicos do tipo intervalo; An interval fuzzy clustering and validation index for clusteinf in interval symbolic data

Moura, Ronildo Pinheiro de Araújo
Fonte: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Sistemas e Computação; Ciência da Computação Publicador: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Sistemas e Computação; Ciência da Computação
Tipo: Dissertação Formato: application/pdf
Português
Relevância na Pesquisa
36.78%
Symbolic Data Analysis (SDA) main aims to provide tools for reducing large databases to extract knowledge and provide techniques to describe the unit of such data in complex units, as such, interval or histogram. The objective of this work is to extend classical clustering methods for symbolic interval data based on interval-based distance. The main advantage of using an interval-based distance for interval-based data lies on the fact that it preserves the underlying imprecision on intervals which is usually lost when real-valued distances are applied. This work includes an approach allow existing indices to be adapted to interval context. The proposed methods with interval-based distances are compared with distances punctual existing literature through experiments with simulated data and real data interval; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; A Análise de Dados Simbólicos (SDA) tem como objetivo prover mecanismos de redução de grandes bases de dados para extração do conhecimento e desenvolver métodos que descrevem esses dados em unidades complexas, tais como, intervalos ou um histograma. O objetivo deste trabalho é estender métodos de agrupamento clássicos para dados simbólicos intervalares baseados em distâncias essencialmente intervalares. A principal vantagem da utilização de uma distância essencialmente intervalar está no fato da preservação da imprecisão inerente aos intervalos...

Aplicação de técnicas multivariadas e sistemas fuzzy de agrupamentos e inferencia na estimção de curvas de demanda de consumidores de baixa tensão

Zorzate, Evanio Henrique
Fonte: Universidade Federal de Mato Grosso do Sul Publicador: Universidade Federal de Mato Grosso do Sul
Tipo: Dissertação de Mestrado
Português
Relevância na Pesquisa
36.45%
Este trabalho apresenta um estudo realizado para estabelecimento de curvas de demanda de unidades consumidoras comerciais, industriais, residenciais e rurais, atendidas em tensão secundária de distribuição. O estudo foi realizado a partir de uma amostra de consumidores e de transformadores. Em seguida apresenta-se a aplicação de quatro métodos para obtenção da curva de demanda representativa para consumidores, a partir de alguns atributos cadastrais. Os métodos aplicados são: método por estrato de consumo e tipo de consumidor, método por estrato de consumo e tipo de consumidor agrupado por estrato, método fuzzy e método por análise de agrupamento (cluster analysis). A partir da obtenção das curvas representativas dos consumidores, realiza-se o procedimento de agregação para estimar a curva de demanda de postos de transformação. Os resultados obtidos a partir da aplicação dos métodos na amostra de transformadores mostram-se equivalentes quanto aos indicadores de desempenho estabelecidos para este trabalho.; This work presents a conducted study to determine load curves for commercial, industrial, residential and rural consuming units, assisted in distribution secondary tension. The study was accomplished starting from a sample of consumers and transformers. Afterwards...

Segmentação fuzzy de imagens coloridas com características texturais: uma aplicação a rochas sedimentares

Siebra, Hélio de Albuquerque
Fonte: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Sistemas e Computação; Ciência da Computação Publicador: Universidade Federal do Rio Grande do Norte; BR; UFRN; Programa de Pós-Graduação em Sistemas e Computação; Ciência da Computação
Tipo: Dissertação Formato: application/pdf
Português
Relevância na Pesquisa
36.65%
Image segmentation is the process of labeling pixels on di erent objects, an important step in many image processing systems. This work proposes a clustering method for the segmentation of color digital images with textural features. This is done by reducing the dimensionality of histograms of color images and using the Skew Divergence to calculate the fuzzy a nity functions. This approach is appropriate for segmenting images that have colorful textural features such as geological, dermoscopic and other natural images, as images containing mountains, grass or forests. Furthermore, experimental results of colored texture clustering using images of aquifers' sedimentary porous rocks are presented and analyzed in terms of precision to verify its e ectiveness.; Universidade Federal do Rio Grande do Norte; A Segmentação de imagens é o processo de rotulagem de pixels em diferentes objetos, um passo importante em diversos sistemas de processamento de imagens. Este trabalho propõe um método de agrupamento para a segmentação de imagens digitais coloridas com propriedades texturais. Isto é feito através da redução de dimensionalidade dos histogramas das imagens coloridas e do uso da Divergência Skew no cálculo das funções de a nidade fuzzy. Esse tipo de abordagem é adequada à segmentação de imagens coloridas que possuam características texturais...

Modelagem e controle preditivo utilizando multimodelos; Modeling and predictive control using multi-models

Jeremias Barbosa Machado
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 22/02/2007 Português
Relevância na Pesquisa
36.57%
o interesse na utilização de algoritmos de controle sofisticados cresce no meio industrial devido à necessidade de melhor qualidade dos produtos produzidos. Uma abordagem que vem ganhando destaque é a utilização de sistemas de controle não-linear que modelam os sistemas por meio de multimodelos lineares. Neste contexto, este trabalho apresenta a modelagem e controle de sistemas não-lineares através de controladores preditivos não-lineares que utilizam multimodelos lineares. Os controladores preditivos baseados em modelos (MBPC - Model Based Predictive Controllers) são controladores cuja principal característica é a utilização de um modelo na determinação de um conjunto de previsões de saída, e a lei de controle é calculada em função destas previsões minimizando-se uma função de custo. O desempenho deste controlador depende da qualidade do modelo utilizado para predição dos sinais de saída. A proposta do trabalho é modelar as não-linearidades do processo sob controle através de modelos fuzzy Takagi-Sugeno - TS com funções de base ortonormal - FBO nos conseqüentes das regras. As FBO's apresentam diversas características conceituais e estruturais de interesse na elaboração dos modelos utilizados nos controladores preditivos...

Algoritmo de agrupamento Fuzzy C-Means para aprendizado e tomada de decisão em redes ópticas de próxima geração  ; Fuzzy C-Means algorithm for learning and decision making in next generation optical network

Tronco, Tania Regina
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 31/08/2015 Português
Relevância na Pesquisa
56.65%
As redes ópticas têm evoluído de forma contínua dentro de um paradigma de aumento das taxas de transmissão e extensão dos enlaces, devido à demanda crescente de banda em função do crescimento do tráfego da Internet. Além disso, atualmente, diversas propostas vêm sendo implementadas visando torná-las mais dinâmicas e flexíveis. Uma destas propostas que atualmente está no âmbito de pesquisa e desenvolvimento refere-se às redes ópticas definidas por software (Software Defined Optical Network, SDON). Nas SDONs, o plano de controle é desacoplado do plano de encaminhamento de dados possibilitando que controladores remotos configurem em tempo real diversos parâmetros dos canais ópticos, tais como a taxa de transmissão, o formato de modulação, a largura do espectro, entre outros. Nestas redes, o sistema de controle torna-se bastante complexo, uma vez que diversos parâmetros têm que ser ajustados de forma dinâmica e autônoma, ou seja, com a mínima intervenção humana. O emprego de técnicas de inteligência computacional em tal controle possibilita a configuração autônoma dos parâmetros dos equipamentos com base em dados coletados por monitores de rede e o aprendizado, a partir de eventos passados, visando a otimização do desempenho da rede. Esta arquitetura de controle constitui um novo paradigma na evolução das redes ópticas...