Página 1 dos resultados de 6 itens digitais encontrados em 0.017 segundos

Sistemas de comunicação CAN FD: modelamento por software e análise temporal.; CAN FD communication systems: modeling software and temporal analysis.

Andrade, Ricardo de
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 26/09/2014 Português
Relevância na Pesquisa
86.29%
O CAN (Controller Area Network) é um padrão no barramento de comunicação, amplamente difundido em aplicações industriais, particularmente em sistemas automotivos. Atualmente, um dos principais problemas no ramo automotivo é que esse barramento está com muitas mensagens no barramento, resultado da incorporação incremental de sistemas eletrônicos em automóveis, visto que há uma exigência maior de conectividade devido às exigências da sociedade e mercado. Como alternativa, vem sendo desenvolvida uma nova rede de comunicação, conhecida como CAN with Flexible Data-Rate (CAN-FD), que é um barramento com velocidade de transmissão de informação mais alta e maior capacidade de transporte de dados. Este projeto tem por objetivo principal explorar as funcionalidades da rede CAN-FD, através de simulações do trânsito de mensagens numa rede CAN-FD usando os dados de uma rede real CAN, e verificando a previsibilidade de ambas no âmbito de um protocolo que possa atender à demanda de sistemas complexos. A comparação é executada a partir de um conjunto de mensagens adicionadas na rede, para verificar os limites de transmissão de cada uma das redes, e os respectivos tempos de atraso das mensagens. Como um segundo estudo de caso...

On the performance analysis of full-duplex networks

Alves, Hirley
Fonte: Curitiba Publicador: Curitiba
Tipo: Tese de Doutorado
Português
Relevância na Pesquisa
36.18%
In this thesis we study Full-Duplex (FD) cooperative networks from different perspectives, using concepts of information theory, communication theory and applied statistics. We provide a comprehensive performance analysis of cooperative communications systems operating with FD relays. We demonstrate that FD relaying is feasible even when experiencing strong self-interference, and we show its application under different scenarios. More importantly, the results attained through this work serve as a benchmark for design as well as deployment of current and future wireless communications technologies. Our first contribution is a comprehensive overview of the state-of-the-art on FD communications, more specifically on FD relaying, and we revisit some of the main properties of cooperative schemes. Another contribution comes from an extensive analysis of outage probability, throughput and energy efficiency of FD relaying over Rayleigh fading channels. Besides the mathematical framework introduced herein, we also show that in some cases cooperative Half-Duplex (HD) schemes achieve better performance than FD relaying with self-interference. Therefore, we draw a discussion on the trade-offs between HD and FD schemes as well as between throughput and energy efficiency. Then...

Distributed Virtual Resource Allocation in Small Cell Networks with Full Duplex Self-backhauls and Virtualization

Chen, Lei; Yu, F. Richard; Ji, Hong; Liu, Gang; Leung, Victor C. M.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 19/10/2015 Português
Relevância na Pesquisa
35.99%
Wireless network virtualization has attracted great attentions from both academia and industry. Another emerging technology for next generation wireless networks is in-band full duplex (FD) communications. Due to its promising performance, FD communication has been considered as an effective way to achieve self-backhauls for small cells. In this paper, we introduce wireless virtualization into small cell networks, and propose a virtualized small cell network architecture with FD self-backhauls. We formulate the virtual resource allocation problem in virtualized small cell networks with FD self-backhauls as an optimization problem. Since the formulated problem is a mixed combinatorial and non-convex optimization problem, its computational complexity is high. Moreover, the centralized scheme may suffer from signaling overhead, outdated dynamics information, and scalability issues. To solve it efficiently, we divide the original problem into two subproblems. For the first subproblem, we transfer it to a convex optimization problem, and then solve it by an efficient alternating direction method of multipliers (ADMM)-based distributed algorithm. The second subproblem is a convex problem, which can be solved by each infrastructure provider. Extensive simulations are conducted with different system configurations to show the effectiveness of the proposed scheme.

A model for randomized resource allocation in decentralized wireless networks

Moshksar, Kamyar; Bayesteh, Alireza; Khandani, Amir K.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 29/11/2009 Português
Relevância na Pesquisa
25.68%
In this paper, we consider a decentralized wireless communication network with a fixed number $u$ of frequency sub-bands to be shared among $N$ transmitter-receiver pairs. It is assumed that the number of active users is a random variable with a given probability mass function. Moreover, users are unaware of each other's codebooks and hence, no multiuser detection is possible. We propose a randomized Frequency Hopping (FH) scheme in which each transmitter randomly hops over a subset of $u$ sub-bands from transmission to transmission. We derive lower and upper bounds on the mutual information of each user and demonstrate that, for large Signal-to-Noise Ratio (SNR) values, the two bounds coincide. This observation enables us to compute the sum multiplexing gain of the system and obtain the optimum hopping strategy for maximizing this quantity. We compare the performance of the FH system with that of the Frequency Division (FD) system in terms of several performance measures and show that (depending on the probability mass function of the number of active users) the FH system can offer a significant improvement implying a more efficient usage of the spectrum.

Randomized vs. orthogonal spectrum allocation in decentralized networks: Outage Analysis

Moshksar, Kamyar; Bayesteh, Alireza; Khandani, Amir K.
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 30/11/2009 Português
Relevância na Pesquisa
25.79%
We address a decentralized wireless communication network with a fixed number $u$ of frequency sub-bands to be shared among $N$ transmitter-receiver pairs. It is assumed that the number of users $N$ is a random variable with a given distribution and the channel gains are quasi-static Rayleigh fading. The transmitters are assumed to be unaware of the number of active users in the network as well as the channel gains and not capable of detecting the presence of other users in a given frequency sub-band. Moreover, the users are unaware of each other's codebooks and hence, no multiuser detection is possible. We consider a randomized Frequency Hopping (FH) scheme in which each transmitter randomly hops over a subset of the $u$ sub-bands from transmission to transmission. Developing a new upper bound on the differential entropy of a mixed Gaussian random vector and using entropy power inequality, we offer a series of lower bounds on the achievable rate of each user. Thereafter, we obtain lower bounds on the maximum transmission rate per user to ensure a specified outage probability at a given Signal-to-Noise Ratio (SNR) level. We demonstrate that the so-called outage capacity can be considerably higher in the FH scheme than in the Frequency Division (FD) scenario for reasonable distributions on the number of active users. This guarantees a higher spectral efficiency in FH compared to FD.

Interference Management with Partial Uplink/Downlink Spectrum Overlap

Randrianantenaina, Itsikiantsoa; Elsawy, Hesham; Dahrouj, Hayssam; Alouini, Mohamed-Slim
Fonte: Universidade Cornell Publicador: Universidade Cornell
Tipo: Artigo de Revista Científica
Publicado em 19/11/2015 Português
Relevância na Pesquisa
15.94%
Simultaneous reuse of spectral resources by uplink and downlink, denoted as in-band full duplex (FD) communication, is promoted to double the spectral efficiency when compared to its half-duplex (HD) counterpart. Interference management, however, remains challenging in FD cellular networks, especially when high disparity between uplink and downlink transmission powers exists. The uplink performance can be particularly deteriorated when operating on channels that are simultaneously occupied with downlink transmission. This paper considers a cellular wireless system with partial spectrum overlap between the downlink and uplink. The performance of the system becomes, therefore, a function of the overlap fraction, as well as the power level of both the uplink and downlink transmissions. The paper considers the problem of maximizing an overall network utility to find the uplink/downlink transmission powers and the spectrum overlap fraction between the uplink and downlink spectrum in each cell, and proposes solving the problem using interior point method. Simulations results confirm the vulnerability of the uplink performance to the FD operation, and show the superiority of the proposed scheme over the FD and HD schemes. The results further show that explicit uplink and downlink performance should be considered for efficient design of cellular networks with overlapping uplink/downlink resources.