Página 14 dos resultados de 60878 itens digitais encontrados em 0.090 segundos

Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes

Dadgostar, Hajir; Zarnegar, Brian; Hoffmann, Alexander; Qin, Xiao-Feng; Truong, Uyen; Rao, Govinda; Baltimore, David; Cheng, Genhong
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Publicado em 05/02/2002 Português
Relevância na Pesquisa
45.8%
CD40/CD40L interaction is essential for multiple biological events in T dependent humoral immune responses, including B cell survival and proliferation, germinal center and memory B cell formation, and antibody isotype switching and affinity maturation. By using high-density microarrays, we examined gene expression in primary mouse B lymphocytes after multiple time points of CD40L stimulation. In addition to genes involved in cell survival and growth, which are also induced by other mitogens such as lipopolysaccharide, CD40L specifically activated genes involved in germinal center formation and T cell costimulatory molecules that facilitate T dependent humoral immunity. Next, by examining the roles of individual CD40-activated signal transduction pathways, we dissected the overall CD40-mediated response into genes independently regulated by the individual pathways or collectively by all pathways. We also found that gene down-regulation is a significant part of the overall response and that the p38 pathway plays an important role in this process, whereas the NF-κB pathway is important for the up-regulation of primary response genes. Our finding of overlapping independent control of gene expression modules by different pathways suggests...

Oscillatory brain states and learning: Impact of hippocampal theta-contingent training

Seager, Matthew A.; Johnson, Lynn D.; Chabot, Elizabeth S.; Asaka, Yukiko; Berry, Stephen D.
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Eyeblink classical conditioning is a relatively simple form of associative learning that has become an invaluable tool in our understanding of the neural mechanisms of learning. When studying rabbits in this paradigm, we observed a dramatic modification of learning rate by conducting training during episodes of either hippocampal theta or hippocampal non-theta activity as determined by on-line slow-wave spectral analysis. Specifically, if animals were given trials only when a computer analysis verified a predominance of slow-wave oscillations at theta frequencies (3–8 Hz), they learned in half as many trials as animals trained during non-theta hippocampal activity (58 vs. 115). This finding provides important evidence from awake, behaving animals that supports recent advances in our knowledge of (i) brain sites and neurobiological mechanisms of learning and memory, specifically hippocampus and theta oscillations, (ii) the biological plausibility of current models of hippocampal function that posit important roles for oscillatory potentials, and (iii) the design of interfaces between biological and cybernetic (electronic) systems that can optimize cognitive processes and performance.

Biological water at the protein surface: Dynamical solvation probed directly with femtosecond resolution

Pal, Samir Kumar; Peon, Jorge; Zewail, Ahmed H.
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Biological water at the interface of proteins is critical to their equilibrium structures and enzyme function and to phenomena such as molecular recognition and protein–protein interactions. To actually probe the dynamics of water structure at the surface, we must examine the protein itself, without disrupting the native structure, and the ultrafast elementary processes of hydration. Here we report direct study, with femtosecond resolution, of the dynamics of hydration at the surface of the enzyme protein Subtilisin Carlsberg, whose single Trp residue (Trp-113) was used as an intrinsic biological fluorescent probe. For the protein, we observed two well separated dynamical solvation times, 0.8 ps and 38 ps, whereas in bulk water, we obtained 180 fs and 1.1 ps. We also studied a covalently bonded probe at a separation of ≈7 Å and observed the near disappearance of the 38-ps component, with solvation being practically complete in (time constant) 1.5 ps. The degree of rigidity of the probe (anisotropy decay) and of the water environment (protein vs. micelle) was also studied. These results show that hydration at the surface is a dynamical process with two general types of trajectories, those that result from weak interactions with the selected surface site...

The identification of E2F1-specific target genes

Wells, Julie; Graveel, Carrie R.; Bartley, Stephanie M.; Madore, Steven J.; Farnham, Peggy J.
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Publicado em 19/03/2002 Português
Relevância na Pesquisa
45.8%
The E2F family of transcriptional regulators consists of six different members. Analysis of E2F-regulated promoters by using cultured cells suggests that E2Fs may have redundant functions. However, animal studies have shown that loss of individual E2Fs can have distinct biological consequences. Such seemingly conflicting results could be due to a difference in E2F-mediated regulation in cell culture vs. animals. Alternatively, there may be genes that are specifically regulated by an individual E2F which have not yet been identified. To investigate this possibility further, we have analyzed gene expression in E2F1 nullizygous mice. We found that loss of E2F1 did not cause changes in expression of known E2F target genes, suggesting that perhaps E2F1-specific promoters are distinct from known E2F target promoters. Therefore, we used oligonucleotide microarrays to identify mRNAs whose expression is altered on loss of E2F1. We demonstrate by chromatin immunoprecipitation that several of the promoters that drive expression of the deregulated mRNAs selectively recruit E2F1, but not other E2Fs, and this recruitment is via an element distinct from a consensus E2F binding site. To our knowledge, these are as yet undocumented examples of promoters being occupied in asynchronously growing cells by a single E2F family member. Interestingly...

Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles

Vauthey, Sylvain; Santoso, Steve; Gong, Haiyan; Watson, Nicki; Zhang, Shuguang
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Several surfactant-like peptides undergo self-assembly to form nanotubes and nanovesicles having an average diameter of 30–50 nm with a helical twist. The peptide monomer contains 7–8 residues and has a hydrophilic head composed of aspartic acid and a tail of hydrophobic amino acids such as alanine, valine, or leucine. The length of each peptide is ≈2 nm, similar to that of biological phospholipids. Dynamic light-scattering studies showed structures with very discrete sizes. The distribution becomes broader over time, indicating a very dynamic process of assembly and disassembly. Visualization with transmission electron microscopy of quick-freeze/deep-etch sample preparation revealed a network of open-ended nanotubes and some vesicles, with the latter being able to “fuse” and “bud” out of the former. The structures showed some tail sequence preference. Many three-way junctions that may act as links between the nanotubes have been observed also. Studies of peptide surfactant molecules have significant implications in the design of nonlipid biological surfactants and the understanding of the complexity and dynamics of the self-assembly processes.

Complementary advantageous substitutions in the evolution of an antiviral RNase of higher primates

Zhang, Jianzhi; Rosenberg, Helene F.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
An improved understanding of the evolution of gene function at the molecular level may provide significant insights into the origin of biological novelty and adaptation. With the approach of ancestral protein reconstruction, we here address the question of how a dramatically enhanced ribonucleolytic activity and the related antiviral activity evolved in a recently duplicated ribonuclease (eosinophil-derived neurotoxin) gene of higher primates. We show that the mother gene of the duplicated genes had already possessed a weak antiviral activity before duplication. After duplication, substitutions at two interacting sites (Arg-64→Ser and Thr-132→Arg) resulted in a 13-fold enhancement of the ribonucleolytic activity of eosinophil-derived neurotoxin. These substitutions are also necessary for the potent antiviral activity, with contributions from additional amino acid changes at interacting sites. Our observation that a change in eosinophil-derived neurotoxin function occurs only when both interacting sites are altered indicates the importance of complementary substitutions in protein evolution. Thus, neutral substitutions are not simply “noises” in protein evolution, as many have thought. They may play constructive roles by setting the intramolecular microenvironment for further complementary advantageous substitutions...

Impaired neural tube closure, axial skeleton malformations, and tracheal ring disruption in TRAF4-deficient mice

Régnier, Catherine H.; Masson, Régis; Kedinger, Valérie; Textoris, Julien; Stoll, Isabelle; Chenard, Marie-Pierre; Dierich, Andrée; Tomasetto, Catherine; Rio, Marie-Christine
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
TRAF4 belongs to the tumor necrosis factor receptor-associated factor (TRAF) family of proteins but, unlike other family members, has not yet been clearly associated to any specific receptor or signaling pathway. To investigate the biological function of TRAF4, we have generated traf4-deficient mice by gene disruption. The traf4 gene mutation is embryonic lethal but with great individual variation, as approximately one third of the homozygous mutant embryos died in utero around embryonic day 14, whereas the others reach adulthood. Surviving mutant mice manifest numerous developmental abnormalities; notably, 100% of homozygous mutant mice suffer respiratory disorder and wheezing caused by tracheal ring disruption. Additional malformations concern mainly the axial skeleton, as the ribs, sternum, tail, and vertebral arches are affected, with various degrees of penetrance. Traf4-deficient mice also exhibit a high incidence of spina bifida, a defect likened to neural tube defects (NTD) that are common congenital malformations in humans. Altogether, our results demonstrate that TRAF4 is required during embryogenesis in key biological processes including the formation of the trachea, the development of the axial skeleton, and the closure of the neural tube. Considering the normal expression pattern of TRAF4 in neural tissues...

An expanded view of bacterial DNA replication

Noirot-Gros, Marie-Françoise; Dervyn, Etienne; Wu, Ling Juan; Mervelet, Peggy; Errington, Jeffery; Ehrlich, S. Dusko; Noirot, Philippe
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Publicado em 11/06/2002 Português
Relevância na Pesquisa
45.8%
A protein-interaction network centered on the replication machinery of Bacillus subtilis was generated by genome-wide two-hybrid screens and systematic specificity assays. The network consists of 91 specific interactions linking 69 proteins. Over one fourth of the interactions take place between homologues of proteins known to interact in other organisms, indicating the high biological significance of the other interactions we report. These interactions provide insights on the relations of DNA replication with recombination and repair, membrane-bound protein complexes, and signaling pathways. They also lead to the biological role of unknown proteins, as illustrated for the highly conserved YabA, which is shown here to act in initiation control. Thus, our interaction map provides a valuable tool for the discovery of aspects of bacterial DNA replication.

Paracrine in vivo inhibitory effects of hepatitis B virus X protein (HBx) on liver cell proliferation: An alternative mechanism of HBx-related pathogenesis

Tralhao, J. Guilherme; Roudier, Jean; Morosan, Serban; Giannini, Carlo; Tu, Hong; Goulenok, Cyril; Carnot, Françoise; Zavala, Flora; Joulin, Virginie; Kremsdorf, Dina; Bréchot, Christian
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Publicado em 14/05/2002 Português
Relevância na Pesquisa
45.8%
The role of the hepatitis B virus X protein (HBx) in the pathogenesis of hepatitis B virus (HBV) infection remains unclear. HBx exhibits pleiotropic biological effects, whose in vivo relevance is a matter for debate. In the present report, we have used a combination of HBx-expressing transgenic mice and liver cell transplantation to investigate the in vivo impact of HBx expression on liver cell proliferation and viability in a regenerative context. We show that moderate HBx expression inhibits liver regeneration after partial hepatectomy in HBx-expressing transgenic mice. We also demonstrate that the transplantation of HBx-expressing liver cells, isolated from HBx transgenic mice, is sufficient to inhibit overall recipient liver regeneration after partial hepatectomy. Moreover, the injection of serum samples drawn from HBx-expressing transgenic mice mimicked the inhibitory effect of HBx on liver regeneration. Finally, the incubation of primary rat hepatocytes with the supernatant of HBx-expressing liver cells inhibits cellular DNA synthesis. Taken together, our results demonstrate a paracrine inhibitory effect of HBx on liver cell proliferation and lead us to propose HBV as one of the few viruses implicated in human cancer which act...

Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli

Tauschek, Marija; Gorrell, Rebecca J.; Strugnell, Richard A.; Robins-Browne, Roy M.
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Publicado em 14/05/2002 Português
Relevância na Pesquisa
45.8%
Enterotoxigenic Escherichia coli (ETEC) is an enteric pathogen that causes cholera-like diarrhea in humans and animals. ETEC secretes a heat-labile enterotoxin (LT), which resembles cholera toxin, but the actual mechanism of LT secretion is presently unknown. We have identified a previously unrecognized type II protein secretion pathway in the prototypic human ETEC strain, H10407 (serotype O78:H11). The genes for this pathway are absent from E. coli K-12, although examination of the K-12 genome suggests that it probably once possessed them. The secretory pathway bears significant homology at the amino acid level to the type II protein secretory pathway required by Vibrio cholerae for the secretion of cholera toxin. With this in mind, we determined whether the homologous pathway of E. coli H10407 played a role in the secretion of LT. To this end, we inactivated the pathway by inserting a kanamycin-resistance gene into one of the genes (gspD) of the type II secretion pathway by homologous recombination. LT secretion by E. coli H10407 and the gspD mutant was assayed by enzyme immunoassay, and its biological activity was assessed by using Y-1 adrenal cells. This investigation showed that the protein secretory pathway is functional and necessary for the secretion of LT by ETEC. Our findings have revealed the mechanism for the secretion of LT by ETEC...

Nanocrystal targeting in vivo

Åkerman, Maria E.; Chan, Warren C. W.; Laakkonen, Pirjo; Bhatia, Sangeeta N.; Ruoslahti, Erkki
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Inorganic nanostructures that interface with biological systems have recently attracted widespread interest in biology and medicine. Nanoparticles are thought to have potential as novel intravascular probes for both diagnostic (e.g., imaging) and therapeutic purposes (e.g., drug delivery). Critical issues for successful nanoparticle delivery include the ability to target specific tissues and cell types and escape from the biological particulate filter known as the reticuloendothelial system. We set out to explore the feasibility of in vivo targeting by using semiconductor quantum dots (qdots). Qdots are small (<10 nm) inorganic nanocrystals that possess unique luminescent properties; their fluorescence emission is stable and tuned by varying the particle size or composition. We show that ZnS-capped CdSe qdots coated with a lung-targeting peptide accumulate in the lungs of mice after i.v. injection, whereas two other peptides specifically direct qdots to blood vessels or lymphatic vessels in tumors. We also show that adding polyethylene glycol to the qdot coating prevents nonselective accumulation of qdots in reticuloendothelial tissues. These results encourage the construction of more complex nanostructures with capabilities such as disease sensing and drug delivery.

STAT1 deficiency unexpectedly and markedly exacerbates the pathophysiological actions of IFN-α in the central nervous system

Wang, Jianping; Schreiber, Robert D.; Campbell, Iain L.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Although signal transducer and activator of transcription 1 (STAT1) is an essential signaling molecule in many IFN-α-regulated processes, some biological responses to IFN-α can occur independently of STAT1. To establish the role of STAT1 in mediating the biological actions of IFN-α in the CNS, transgenic mice [termed glial fibrillary acidic protein (GFAP)-IFN-α] with astrocyte production of IFN-α were bred to be null for the STAT1 gene. Surprisingly, GFAP-IFN-α mice deficient for STAT1 developed earlier onset and more severe neurological disease with increased lethality compared with GFAP-IFN-α mice sufficient for STAT1. Whereas the brain of 2- to 3-month-old GFAP-IFN-α mice showed little, if any abnormality, the brain from GFAP-IFN-α mice deficient for STAT1 had severe neurodegeneration, inflammation, calcification with increased apoptosis, and glial activation. However, the cerebral expression of a number of IFN-regulated STAT1-dependent genes increased in GFAP-IFN-α mice but was reduced markedly in GFAP-IFN-α STAT1-null mice. Of many other signaling molecules examined, STAT3 alone was activated significantly in the brain of GFAP-IFN-α STAT1-null mice. Thus, in the absence of STAT1, alternative signaling pathways mediate pathophysiological actions of IFN-α in the living brain...

Directed evolution of a genetic circuit

Yokobayashi, Yohei; Weiss, Ron; Arnold, Frances H.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
The construction of artificial networks of transcriptional control elements in living cells represents a new frontier for biological engineering. However, biological circuit engineers will have to confront their inability to predict the precise behavior of even the most simple synthetic networks, a serious shortcoming and challenge for the design and construction of more sophisticated genetic circuitry in the future. We propose a combined rational and evolutionary design strategy for constructing genetic regulatory circuits, an approach that allows the engineer to fine-tune the biochemical parameters of the networks experimentally in vivo. By applying directed evolution to genes comprising a simple genetic circuit, we demonstrate that a nonfunctional circuit containing improperly matched components can evolve rapidly into a functional one. In the process, we generated a library of genetic devices with a range of behaviors that can be used to construct more complex circuits.

Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry

Salomon, Arthur R.; Ficarro, Scott B.; Brill, Laurence M.; Brinker, Achim; Phung, Qui T.; Ericson, Christer; Sauer, Karsten; Brock, Ansgar; Horn, David M.; Schultz, Peter G.; Peters, Eric C.
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
The reversible phosphorylation of tyrosine residues is an important mechanism for modulating biological processes such as cellular signaling, differentiation, and growth, and if deregulated, can result in various types of cancer. Therefore, an understanding of these dynamic cellular processes at the molecular level requires the ability to assess changes in the sites of tyrosine phosphorylation across numerous proteins simultaneously as well as over time. Here we describe a sensitive approach based on multidimensional liquid chromatography/mass spectrometry that enables the rapid identification of numerous sites of tyrosine phosphorylation on a number of different proteins from human whole cell lysates. We used this methodology to follow changes in tyrosine phosphorylation patterns that occur over time during either the activation of human T cells or the inhibition of the oncogenic BCR-ABL fusion product in chronic myelogenous leukemia cells in response to treatment with STI571 (Gleevec). Together, these experiments rapidly identified 64 unique sites of tyrosine phosphorylation on 32 different proteins. Half of these sites have been documented in the literature, validating the merits of our approach, whereas motif analysis suggests that a number of the undocumented sites are also potentially involved in biological pathways. This methodology should enable the rapid generation of new insights into signaling pathways as they occur in states of health and disease.

Crystal structure of a photoactive yellow protein from a sensor histidine kinase: Conformational variability and signal transduction

Rajagopal, Sudarshan; Moffat, Keith
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Photoactive yellow protein (E-PYP) is a blue light photoreceptor, implicated in a negative phototactic response in Ectothiorhodospira halophila, that also serves as a model for the Per–Arnt–Sim superfamily of signaling molecules. Because no biological signaling partner for E-PYP has been identified, it has not been possible to correlate any of its photocycle intermediates with a relevant signaling state. However, the PYP domain (Ppr-PYP) from the sensor histidine kinase Ppr in Rhodospirillum centenum, which regulates the catalytic activity of Ppr by blue light absorption, may allow such issues to be addressed. Here we report the crystal structure of Ppr-PYP at 2 Å resolution. This domain has the same absorption spectrum and similar photocycle kinetics as full length Ppr, but a blue-shifted absorbance and considerably slower photocycle than E-PYP. Although the overall fold of Ppr-PYP resembles that of E-PYP, a novel conformation of the β4–β5 loop results in inaccessibility of Met-100, thought to catalyze chromophore reisomerization, to the chromophore. This conformation also exposes a highly conserved molecular surface that could interact with downstream signaling partners. Other structural differences in the α3–α4 and β4–β5 loops are consistent with these regions playing significant roles in the control of photocycle dynamics and...

Structural specificity of heparin binding in the fibroblast growth factor family of proteins

Raman, Rahul; Venkataraman, Ganesh; Ernst, Steffen; Sasisekharan, V.; Sasisekharan, Ram
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Heparin and heparan sulfate glycosaminoglycans (HSGAGs) mediate a wide variety of complex biological processes by specifically binding proteins and modulating their biological activity. One of the best studied model systems for protein–HSGAG interactions is the fibroblast growth factor (FGF) family of molecules, and recent observations have demonstrated that the specificity of a given FGF ligand binding to its cognate receptor (FGFR) is mediated by distinct tissue-specific HSGAG sequences. Although it has been known that sulfate and carboxylate groups in the HSGAG chain play a key role by interacting with basic residues on the proteins, there is little understanding of how these ionic interactions provide the necessary specificity for protein binding. In this study, using all of the available crystal structures of different FGFs and FGF–HSGAG complexes, we show that in addition to the ionic interactions, optimal van der Waals contact between the HSGAG oligosaccharide and the protein is also very important in influencing the specificity of FGF–HSGAG interactions. Although the overall helical structure is maintained in the FGF-bound HSGAG compared with unbound HSGAG, we observe distinct changes in the backbone torsion angles of the oligosaccharide chain induced upon protein binding. These changes result in local deviations in the helical axis that provide optimal ionic and van der Waals contact with the protein. A specific conformation and topological arrangement of the HSGAG-binding loops of FGF...

Mimicking natural evolution in vitro: An N-acetylneuraminate lyase mutant with an increased dihydrodipicolinate synthase activity

Joerger, Andreas C.; Mayer, Sebastian; Fersht, Alan R.
Fonte: The National Academy of Sciences Publicador: The National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
N-acetylneuraminate lyase (NAL) and dihydrodipicolinate synthase (DHDPS) belong to the NAL subfamily of (β/α)8-barrels. They share a common catalytic step but catalyze reactions in different biological pathways. By rational design, we have introduced various mutations into the NAL scaffold from Escherichia coli to switch the activity toward DHDPS. These mutants were tested with respect to their catalytic properties in vivo and in vitro as well as their stability. One point mutation (L142R) was sufficient to create an enzyme that could complement a bacterial auxotroph lacking the gene for DHDPS as efficiently as DHDPS itself. In vitro, this mutant had an increased DHDPS activity of up to 19-fold as defined by the specificity constant kcat/KM for the new substrate l-aspartate-β-semialdehyde when compared with the residual activity of NAL wild-type, mainly because of an increased turnover rate. At the same time, mutant L142R maintained much of its original NAL activity. We have solved the crystal structure of mutant L142R at 1.8 Å resolution in complex with the inhibitor β-hydroxypyruvate. This structure reveals that the conformations of neighboring active site residues are left virtually unchanged by the mutation. The high flexibility of R142 may favor its role in assisting in catalysis. Perhaps...

Viral assembly of oriented quantum dot nanowires

Mao, Chuanbin; Flynn, Christine E.; Hayhurst, Andrew; Sweeney, Rozamond; Qi, Jifa; Georgiou, George; Iverson, Brent; Belcher, Angela M.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly...

Liquid–vapor oscillations of water in hydrophobic nanopores

Beckstein, Oliver; Sansom, Mark S. P.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Water plays a key role in biological membrane transport. In ion channels and water-conducting pores (aquaporins), one-dimensional confinement in conjunction with strong surface effects changes the physical behavior of water. In molecular dynamics simulations of water in short (0.8 nm) hydrophobic pores the water density in the pore fluctuates on a nanosecond time scale. In long simulations (460 ns in total) at pore radii ranging from 0.35 to 1.0 nm we quantify the kinetics of oscillations between a liquid-filled and a vapor-filled pore. This behavior can be explained as capillary evaporation alternating with capillary condensation, driven by pressure fluctuations in the water outside the pore. The free-energy difference between the two states depends linearly on the radius. The free-energy landscape shows how a metastable liquid state gradually develops with increasing radius. For radii > ≈0.55 nm it becomes the globally stable state and the vapor state vanishes. One-dimensional confinement affects the dynamic behavior of the water molecules and increases the self diffusion by a factor of 2–3 compared with bulk water. Permeabilities for the narrow pores are of the same order of magnitude as for biological water pores. Water flow is not continuous but occurs in bursts. Our results suggest that simulations aimed at collective phenomena such as hydrophobic effects may require simulation times >50 ns. For water in confined geometries...

The RNA–protein complex: Direct probing of the interfacial recognition dynamics and its correlation with biological functions

Xia, Tianbing; Becker, Hans-Christian; Wan, Chaozhi; Frankel, Adam; Roberts, Richard W.; Zewail, Ahmed H.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
The N protein from bacteriophage λ is a key regulator of transcription antitermination. It specifically recognizes a nascent mRNA stem loop termed boxB, enabling RNA polymerase to read through downstream terminators processively. The stacking interaction between Trp-18 of WT N protein and A7 of boxB RNA is crucial for efficient antitermination. Here, we report on the direct probing of the dynamics for this interfacial binding and the correlation of the dynamics with biological functions. Specifically, we examined the influence of structural changes in four peptides on the femtosecond dynamics of boxB RNA (2-aminopurine labeled in different positions), through mutations of critical residues of N peptide (residues 1–22). We then compare their in vivo (Escherichia coli) transcription antitermination activities with the dynamics. The results demonstrate that the RNA–peptide complexes adopt essentially two dynamical conformations with the time scale for interfacial interaction in the two structures being vastly different, 1 ps for the stacked structure and nanosecond for the unstacked one; only the weighted average of the two is detected in NMR by nuclear Overhauser effect experiments. Strikingly, the amplitude of the observed ultrafast dynamics depends on the identity of the amino acid residues that are one helical turn away from Trp-18 in the peptides and is correlated with the level of biological function of their respective full-length proteins.