Página 18 dos resultados de 60878 itens digitais encontrados em 0.079 segundos

Protein structure determination from NMR chemical shifts

Cavalli, Andrea; Salvatella, Xavier; Dobson, Christopher M.; Vendruscolo, Michele
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
NMR spectroscopy plays a major role in the determination of the structures and dynamics of proteins and other biological macromolecules. Chemical shifts are the most readily and accurately measurable NMR parameters, and they reflect with great specificity the conformations of native and nonnative states of proteins. We show, using 11 examples of proteins representative of the major structural classes and containing up to 123 residues, that it is possible to use chemical shifts as structural restraints in combination with a conventional molecular mechanics force field to determine the conformations of proteins at a resolution of 2 Å or better. This strategy should be widely applicable and, subject to further development, will enable quantitative structural analysis to be carried out to address a range of complex biological problems not accessible to current structural techniques.

X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis

Finney, Lydia; Mandava, Suneeta; Ursos, Lyann; Zhang, Wen; Rodi, Diane; Vogt, Stefan; Legnini, Daniel; Maser, Jorg; Ikpatt, Francis; Olopade, Olufunmilayo I.; Glesne, David
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Although copper has been reported to influence numerous proteins known to be important for angiogenesis, the enhanced sensitivity of this developmental process to copper bioavailability has remained an enigma, because copper metalloproteins are prevalent and essential throughout all cells. Recent developments in x-ray optics at third-generation synchrotron sources have provided a resource for highly sensitive visualization and quantitation of metalloproteins in biological samples. Here, we report the application of x-ray fluorescence microscopy (XFM) toin vitro models of angiogenesis and neurogenesis, revealing a surprisingly dramatic spatial relocalization specific to capillary formation of 80–90% of endogenous cellular copper stores from intracellular compartments to the tips of nascent endothelial cell filopodia and across the cell membrane. Although copper chelation had no effect on process formation, an almost complete ablation of network formation was observed. XFM of highly vascularized ductal carcinomas showed copper clustering in putative neoangiogenic areas. This use of XFM for the study of a dynamic developmental process not only sheds light on the copper requirement for endothelial tube formation but highlights the value of synchrotron-based facilities in biological research.

Assessment of nitric oxide signals by triiodide chemiluminescence

Hausladen, Alfred; Rafikov, Ruslan; Angelo, Michael; Singel, David J.; Nudler, Evgeny; Stamler, Jonathan S.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Nitric oxide (NO) bioactivity is mainly conveyed through reactions with iron and thiols, furnishing iron nitrosyls and S-nitrosothiols with wide-ranging stabilities and reactivities. Triiodide chemiluminescence methodology has been popularized as uniquely capable of quantifying these species together with NO byproducts, such as nitrite and nitrosamines. Studies with triiodide, however, have challenged basic ideas of NO biochemistry. The assay, which involves addition of multiple reagents whose chemistry is not fully understood, thus requires extensive validation: Few protein standards have in fact been characterized; NO mass balance in biological mixtures has not been verified; and recovery of species that span the range of NO-group reactivities has not been assessed. Here we report on the performance of the triiodide assay vs. photolysis chemiluminescence in side-by-side assays of multiple nitrosylated standards of varied reactivities and in assays of endogenous Fe- and S-nitrosylated hemoglobin. Although the photolysis method consistently gives quantitative recoveries, the yields by triiodide are variable and generally low (approaching zero with some standards and endogenous samples). Moreover, in triiodide, added chemical reagents...

Ultradian oscillations of Stat, Smad, and Hes1 expression in response to serum

Yoshiura, Shigeki; Ohtsuka, Toshiyuki; Takenaka, Yoshiko; Nagahara, Hiroki; Yoshikawa, Kenichi; Kageyama, Ryoichiro
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Serum response has been used as a model for studying signaling transduction for many biological events such as cell proliferation and survival. Although expression of many genes is up- or down-regulated after serum stimulation, the Notch effector Hes1 displays oscillatory response. However, the precise mechanism and biological significance of this oscillation remain to be determined. Here, we identified serum-induced ultradian oscillators, including molecules in Stat and Smad signaling. Stat and Smad oscillations involve activation of Stat3 and Smad1 and delayed negative feedback by their inhibitors Socs3 and Smad6, respectively. Moreover, Stat oscillations induce oscillatory expression of Hes1 by regulating its half-life, and loss of Hes1 oscillations leads to G1 phase retardation of the cell cycle. These results indicate that coupled Stat and Hes1 oscillations are important for efficient cell proliferation and provide evidence that expression modes of signaling molecules affect downstream cellular events.

A general model for allometric covariation in botanical form and function

Price, Charles A.; Enquist, Brian J.; Savage, Van M.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
The West, Brown, and Enquist (WBE) theory for the origin of allometric scaling laws is centered on the idea that the geometry of the vascular network governs how a suite of organismal traits covary with each other and, ultimately, how they scale with organism size. This core assumption has been combined with other secondary assumptions based on physiological constraints, such as minimizing the scaling of transport and biomechanical costs while maximally filling a volume. Together, these assumptions give predictions for specific “quarter-power” scaling exponents in biology. Here we provide a strong test of the core assumption of WBE by examining how well it holds when the secondary assumptions have been relaxed. Our relaxed version of WBE predicts that allometric exponents are highly constrained and covary according to specific quantitative functions. To test this core prediction, we assembled several botanical data sets with measures of the allometry of morphological traits. A wide variety of plant taxa appear to obey the predictions of the model. Our results (i) underscore the importance of network geometry in governing the variability and central tendency of biological exponents, (ii) support the hypothesis that selection has primarily acted to minimize the scaling of hydrodynamic resistance...

Metabolite essentiality elucidates robustness of Escherichia coli metabolism

Kim, Pan-Jun; Lee, Dong-Yup; Kim, Tae Yong; Lee, Kwang Ho; Jeong, Hawoong; Lee, Sang Yup; Park, Sunwon
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redundant or alternative pathways. Thus, only a limited number of genes have been identified to be lethal to the cell. In this regard, the reaction-centric gene deletion study has a limitation in understanding the metabolic robustness. Here, we report the use of flux-sum, which is the summation of all incoming or outgoing fluxes around a particular metabolite under pseudo-steady state conditions, as a good conserved property for elucidating such robustness of E. coli from the metabolite point of view. The functional behavior, as well as the structural and evolutionary properties of metabolites essential to the cell survival, was investigated by means of a constraints-based flux analysis under perturbed conditions. The essential metabolites are capable of maintaining a steady flux-sum even against severe perturbation by actively redistributing the relevant fluxes. Disrupting the flux-sum maintenance was found to suppress cell growth. This approach of analyzing metabolite essentiality provides insight into cellular robustness and concomitant fragility...

Searching for species in haloarchaea

Papke, R. Thane; Zhaxybayeva, Olga; Feil, Edward J.; Sommerfeld, Katrin; Muise, Denise; Doolittle, W. Ford
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Prokaryotic (bacterial and archaeal) species definitions and the biological concepts that underpin them entail clustering (cohesion) among individuals, in terms of genome content and gene sequence similarity. Homologous recombination can maintain gene sequence similarity within, while permitting divergence between, clusters and is thus the basis for recent efforts to apply the Biological Species Concept in prokaryote systematics and ecology. In this study, we examine isolates of the haloarchaeal genus Halorubrum from two adjacent ponds of different salinities at a Spanish saltern and a natural saline lake in Algeria by using multilocus sequence analysis. We show that, although clusters can be defined by concatenation of multiple marker sequences, barriers to exchange between them are leaky. We suggest that no nonarbitrary way to circumscribe “species” is likely to emerge for this group, or by extension, to apply generally across prokaryotes. Arbitrary criteria might have limited practical use, but still must be agreed upon by the community.

The circadian clock stops ticking during deep hibernation in the European hamster

Revel, Florent G.; Herwig, Annika; Garidou, Marie-Laure; Dardente, Hugues; Menet, Jérôme S.; Masson-Pévet, Mireille; Simonneaux, Valérie; Saboureau, Michel; Pévet, Paul
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Publicado em 21/08/2007 Português
Relevância na Pesquisa
45.8%
Hibernation is a fascinating, yet enigmatic, physiological phenomenon during which body temperature and metabolism are reduced to save energy. During the harsh season, this strategy allows substantial energy saving by reducing body temperature and metabolism. Accordingly, biological processes are considerably slowed down and reduced to a minimum. However, the persistence of a temperature-compensated, functional biological clock in hibernating mammals has long been debated. Here, we show that the master circadian clock no longer displays 24-h molecular oscillations in hibernating European hamsters. The clock genes Per1, Per2, and Bmal1 and the clock-controlled gene arginine vasopressin were constantly expressed in the suprachiasmatic nucleus during deep torpor, as assessed by radioactive in situ hybridization. Finally, the melatonin rhythm-generating enzyme, arylalkylamine N-acetyltransferase, whose rhythmic expression in the pineal gland is controlled by the master circadian clock, no longer exhibits day/night changes of expression but constantly elevated mRNA levels over 24 h. Overall, these data provide strong evidence that in the European hamster the molecular circadian clock is arrested during hibernation and stops delivering rhythmic output signals.

Estrogen receptor-α expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice

Feng, Yuxin; Manka, David; Wagner, Kay-Uwe; Khan, Sohaib A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
The estrogen receptor-α (ERα) is a critical transcription factor that regulates epithelial cell proliferation and ductal morphogenesis during postnatal mammary gland development. Tissue recombination and transplantation studies using the first generation of ERα knockout (ERKO) mice suggested that this steroid hormone receptor is required in the mammary stroma that subsequently exerts its effect on the epithelium through additional paracrine signaling events. A more detailed analysis revealed that ERKO mice produce a truncated ERα protein with detectable transactivation activity, and it is likely that this functional ERα variant has masked the biological significance of this steroid receptor in the mammary epithelium. In this article, we describe the generation a Cre-lox-based conditional knockout of the ERα gene to study the biological function of this steroid receptor in the epithelial compartment at defined stages of mammary gland development. The mouse mammary tumor virus (MMTV)-Cre-mediated, epithelial-specific ablation of exon 3 of the ERα gene in virgin mice severely impaired ductal elongation and side branching. The conditional knockout resulted in ablation of the ERα protein, and the progesterone receptor (PR), whose expression is under the control of ERα...

In vitro synthesis of the iron–molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins

Curatti, Leonardo; Hernandez, Jose A.; Igarashi, Robert Y.; Soboh, Basem; Zhao, Dehua; Rubio, Luis M.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Biological nitrogen fixation, the conversion of atmospheric N2 to NH3, is an essential process in the global biogeochemical cycle of nitrogen that supports life on Earth. Most of the biological nitrogen fixation is catalyzed by the molybdenum nitrogenase, which contains at its active site one of the most complex metal cofactors known to date, the iron–molybdenum cofactor (FeMo-co). FeMo-co is composed of 7Fe, 9S, Mo, R-homocitrate, and one unidentified light atom. Here we demonstrate the complete in vitro synthesis of FeMo-co from Fe2+, S2−, MoO42−, and R-homocitrate using only purified Nif proteins. This synthesis provides direct biochemical support to the current model of FeMo-co biosynthesis. A minimal in vitro system, containing NifB, NifEN, and NifH proteins, together with Fe2+, S2−, MoO42−, R-homocitrate, S-adenosyl methionine, and Mg-ATP, is sufficient for the synthesis of FeMo-co and the activation of apo-dinitrogenase under anaerobic-reducing conditions. This in vitro system also provides a biochemical approach to further study the function of accessory proteins involved in nitrogenase maturation (as shown here for NifX and NafY). The significance of these findings in the understanding of the complete FeMo-co biosynthetic pathway and in the study of other complex Fe-S cluster biosyntheses is discussed.

A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay

Cloern, James E.; Jassby, Alan D.; Thompson, Janet K.; Hieb, Kathryn A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Ecological observations sustained over decades often reveal abrupt changes in biological communities that signal altered ecosystem states. We report a large shift in the biological communities of San Francisco Bay, first detected as increasing phytoplankton biomass and occurrences of new seasonal blooms that began in 1999. This phytoplankton increase is paradoxical because it occurred in an era of decreasing wastewater nutrient inputs and reduced nitrogen and phosphorus concentrations, contrary to the guiding paradigm that algal biomass in estuaries increases in proportion to nutrient inputs from their watersheds. Coincidental changes included sharp declines in the abundance of bivalve mollusks, the key phytoplankton consumers in this estuary, and record high abundances of several bivalve predators: Bay shrimp, English sole, and Dungeness crab. The phytoplankton increase is consistent with a trophic cascade resulting from heightened predation on bivalves and suppression of their filtration control on phytoplankton growth. These community changes in San Francisco Bay across three trophic levels followed a state change in the California Current System characterized by increased upwelling intensity, amplified primary production, and strengthened southerly flows. These diagnostic features of the East Pacific “cold phase” lead to strong recruitment and immigration of juvenile flatfish and crustaceans into estuaries where they feed and develop. This study...

Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum

Islam, Tajul; Jensen, Sigmund; Reigstad, Laila Johanne; Larsen, Øivind; Birkeland, Nils-Kåre
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Methanotrophic bacteria constitute a ubiquitous group of microorganisms playing an important role in the biogeochemical carbon cycle and in control of global warming through natural reduction of methane emission. These bacteria share the unique ability of using methane as a sole carbon and energy source and have been found in a great variety of habitats. Phylogenetically, known methanotrophs constitute a rather limited group and have so far only been affiliated with the Proteobacteria. Here, we report the isolation and initial characterization of a nonproteobacterial obligately methanotrophic bacterium. The isolate, designated Kam1, was recovered from an acidic hot spring in Kamchatka, Russia, and is more thermoacidophilic than any other known methanotroph, with optimal growth at ≈55°C and pH 3.5. Kam1 is only distantly related to all previously known methanotrophs and belongs to the Verrucomicrobia lineage of evolution. Genes for methane monooxygenases, essential for initiation of methane oxidation, could not be detected by using standard primers in PCR amplification and Southern blot analysis, suggesting the presence of a different methane oxidation enzyme. Kam1 also lacks the well developed intracellular membrane systems typical for other methanotrophs. The isolate represents a previously unrecognized biological methane sink...

Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae

Barbeta, Barbara L.; Marshall, Alan T.; Gillon, Amanda D.; Craik, David J.; Anderson, Marilyn A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Several members of the Rubiaceae and Violaceae plant families produce a series of cyclotides or macrocyclic peptides of 28–37 aa with an embedded cystine knot. The cyclic peptide backbone together with the knotted and strongly braced structure confers exceptional chemical and biological stability that has attracted attention for potential pharmaceutical applications. Cyclotides display a diverse range of biological activities, such as uterotonic action, anti-HIV activity, and neurotensin antagonism. In plants, their primary role is probably protection from insect attack. Ingestion of the cyclotide kalata B1 severely retards the growth of larvae from the Lepidopteran species Helicoverpa armigera. We examined the gut of these larvae after consumption of kalata B1 by light, scanning, and transmission electron microscopy. We established that kalata B1 induces disruption of the microvilli, blebbing, swelling, and ultimately rupture of the cells of the gut epithelium. The histology of this response is similar to the response of H. armigera larvae to the Bacillus thuringiensis delta-endotoxin, which is widely used to control these insect pests of crops such as cotton.

Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity

Hishikawa, Daisuke; Shindou, Hideo; Kobayashi, Saori; Nakanishi, Hiroki; Taguchi, Ryo; Shimizu, Takao
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
All organisms consist of cells that are enclosed by a cell membrane containing bipolar lipids and proteins. Glycerophospholipids are important not only as structural and functional components of cellular membrane but also as precursors of various lipid mediators. Polyunsaturated fatty acids comprising arachidonic acid or eicosapentaenoic acid are located at sn-2 position, but not at sn-1 position of glycerophospholipids in an asymmetrical manner. In addition to the asymmetry, the membrane diversity is important for membrane fluidity and curvature. To explain the asymmetrical distribution of fatty acids, the rapid turnover of sn-2 position was proposed in 1958 by Lands [Lands WE (1958) Metabolism of glycerolipides: A comparison of lecithin and triglyceride synthesis. J Biol Chem 231:883–888]. However, the molecular mechanisms and biological significance of the asymmetry remained unknown. Here, we describe a putative enzyme superfamily consisting mainly of three gene families, which catalyzes the transfer of acyl-CoAs to lysophospholipids to produce different classes of phospholipids. Among them, we characterized three important enzymes with different substrate specificities and tissue distributions; one, termed lysophosphatidylcholine acyltransferase-3 (a mammalian homologue of Drosophila nessy critical for embryogenesis)...

Role of the Akt pathway in mRNA translation of interferon-stimulated genes

Kaur, Surinder; Sassano, Antonella; Dolniak, Blazej; Joshi, Sonali; Majchrzak-Kita, Beata; Baker, Darren P.; Hay, Nissim; Fish, Eleanor N.; Platanias, Leonidas C.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Multiple signaling pathways are engaged by the type I and II IFN receptors, but their specific roles and possible coordination in the generation of IFN-mediated biological responses remain unknown. We provide evidence that activation of Akt kinases is required for IFN-inducible engagement of the mTOR/p70 S6 kinase pathway. Our data establish that Akt activity is essential for up-regulation of key IFN-α- and IFN-γ-inducible proteins, which have important functional consequences in the induction of IFN responses. Such effects of the Akt pathway are unrelated to regulatory activities on IFN-dependent STAT phosphorylation/activation or transcriptional regulation. By contrast, they reflect regulatory activities on mRNA translation via direct control of the mTOR pathway. In studies using Akt1 and Akt2 double knockout cells, we found that the absence of Akt kinases results in dramatic reduction in IFN-induced antiviral responses, establishing a critical role of the Akt pathway in IFN signaling. Thus, activation of the Akt pathway by the IFN receptors complements the function of IFN-activated JAK–STAT pathways, by allowing mRNA translation of IFN-stimulated genes and, ultimately, the induction of the biological effects of IFNs.

Impacts of climate warming on terrestrial ectotherms across latitude

Deutsch, Curtis A.; Tewksbury, Joshua J.; Huey, Raymond B.; Sheldon, Kimberly S.; Ghalambor, Cameron K.; Haak, David C.; Martin, Paul R.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation...

Functional specialization among insect chitinase family genes revealed by RNA interference

Zhu, Qingsong; Arakane, Yasuyuki; Beeman, Richard W.; Kramer, Karl J.; Muthukrishnan, Subbaratnam
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
The biological functions of individual members of the large family of chitinase-like proteins from the red flour beetle, Tribolium castaneum (Tc), were examined by using gene-specific RNAi. One chitinase, TcCHT5, was found to be required for pupal–adult molting only. A lethal phenotype was observed when the transcript level of TcCHT5 was down-regulated by injection of TcCHT5-specific dsRNA into larvae. The larvae had metamorphosed into pupae and then to pharate adults but did not complete adult eclosion. Specific knockdown of transcripts for another chitinase, TcCHT10, which has multiple catalytic domains, prevented embryo hatch, larval molting, pupation, and adult metamorphosis, indicating a vital role for TcCHT10 during each of these processes. A third chitinase-like protein, TcCHT7, was required for abdominal contraction and wing/elytra extension immediately after pupation but was dispensable for larval–larval molting, pupation, and adult eclosion. The wing/elytra abnormalities found in TcCHT7-silenced pupae were also manifest in the ensuing adults. A fourth chitinase-like protein, TcIDGF4, exhibited no chitinolytic activity but contributed to adult eclosion. No phenotypic effects were observed after knockdown of transcripts for several other chitinase-like proteins...

Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry

Küpper, Frithjof C.; Carpenter, Lucy J.; McFiggans, Gordon B.; Palmer, Carl J.; Waite, Tim J.; Boneberg, Eva-Maria; Woitsch, Sonja; Weiller, Markus; Abela, Rafael; Grolimund, Daniel; Potin, Philippe; Butler, Alison; Luther, George W.; Kroneck, Peter M. H
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Brown algae of the Laminariales (kelps) are the strongest accumulators of iodine among living organisms. They represent a major pump in the global biogeochemical cycle of iodine and, in particular, the major source of iodocarbons in the coastal atmosphere. Nevertheless, the chemical state and biological significance of accumulated iodine have remained unknown to this date. Using x-ray absorption spectroscopy, we show that the accumulated form is iodide, which readily scavenges a variety of reactive oxygen species (ROS). We propose here that its biological role is that of an inorganic antioxidant, the first to be described in a living system. Upon oxidative stress, iodide is effluxed. On the thallus surface and in the apoplast, iodide detoxifies both aqueous oxidants and ozone, the latter resulting in the release of high levels of molecular iodine and the consequent formation of hygroscopic iodine oxides leading to particles, which are precursors to cloud condensation nuclei. In a complementary set of experiments using a heterologous system, iodide was found to effectively scavenge ROS in human blood cells.

Universal scaling law of electrical turbulence in the mammalian heart

Noujaim, Sami F.; Berenfeld, Omer; Kalifa, Jérôme; Cerrone, Marina; Nanthakumar, Kumaraswamy; Atienza, Felipe; Moreno, Javier; Mironov, Sergey; Jalife, José
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Many biological processes, such as metabolic rate and life span, scale with body mass (BM) according to the universal law of allometric scaling: Y = aBMb (Y, biological process; b, scaling exponent). We investigated whether the temporal properties of ventricular fibrillation (VF), the major cause of sudden and unexpected cardiac death, scale with BM. By using high-resolution optical mapping, numerical simulations and metaanalysis of VF data in 11 mammalian species, we demonstrate that the interbeat interval of VF scales as VFcycle length = 53 × BM1/4, spanning more than four orders of magnitude in BM from mouse to horse.

Stage-specific gene expression is a fundamental characteristic of rat spermatogenic cells and Sertoli cells

Johnston, Daniel S.; Wright, William W.; DiCandeloro, Paul; Wilson, Ewa; Kopf, Gregory S.; Jelinsky, Scott A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Mammalian spermatogenesis is a complex biological process that occurs within a highly organized tissue, the seminiferous epithelium. The coordinated maturation of spermatogonia, spermatocytes, and spermatids suggests the existence of precise programs of gene expression in these cells and in their neighboring somatic Sertoli cells. The objective of this study was to identify the genes that execute these programs. Rat seminiferous tubules at stages I, II–III, IV–V, VI, VIIa,b, VIIc,d, VIII, IX–XI, XII, and XIII–XIV of the cycle were isolated by microdissection, whereas Sertoli cells, spermatogonia plus early spermatocytes, pachytene spermatocytes, and round spermatids were purified from enzymatically dispersed testes. Microarray analysis by using Rat Genome 230 2.0 arrays identified 16,971 probe sets that recognized testicular transcripts, and 398 of these were identified as testis-specific. Expression of 1,286 probe sets were found to differ at least 4-fold between two cell types and also across the stages of the cycle. Pathway and annotated cluster analyses of those probe sets predicted that entire biological pathways and processes are regulated cyclically in specific cells. Important among these are the cell cycle, DNA repair...