Página 22 dos resultados de 60878 itens digitais encontrados em 0.074 segundos

Arabidopsis hybrid speciation processes

Schmickl, Roswitha; Koch, Marcus A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species...

Reconstruction of a 1,910-y-long locust series reveals consistent associations with climate fluctuations in China

Tian, Huidong; Stige, Leif C.; Cazelles, Bernard; Kausrud, Kyrre Linne; Svarverud, Rune; Stenseth, Nils C.; Zhang, Zhibin
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
It is becoming increasingly clear that global warming is taking place; however, its long-term effects on biological populations are largely unknown due to lack of long-term data. Here, we reconstructed a 1,910-y-long time series of outbreaks of Oriental migratory locusts (Locusta migratoria manilensis) in China, on the basis of information extracted from >8,000 historical documents. First by analyzing the most recent period with the best data quality using generalized additive models, we found statistically significant associations between the reconstructed locust abundance and indexes of precipitation and temperature at both annual (A.D. 1512–1911) and decadal (A.D. 1000–1900) scales: There were more locusts under dry and cold conditions and when locust abundance was high in the preceding year or decade. Second, by exploring locust–environment correlations using a 200-y moving window, we tested whether these associations also hold further back in time. The locust–precipitation correlation was found to hold at least as far back as to A.D. 500, supporting the robustness of this link as well as the quality of both reconstructions. The locust–temperature correlation was weaker and less consistent, which may reflect this link being indirect and thus more easily moderated by other factors. We anticipate that further analysis of this unique time series now available to the scientific community will continue to provide insights into biological consequences of climate change in the years to come.

Optimal defocus estimation in individual natural images

Burge, Johannes; Geisler, Wilson S.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Defocus blur is nearly always present in natural images: Objects at only one distance can be perfectly focused. Images of objects at other distances are blurred by an amount depending on pupil diameter and lens properties. Despite the fact that defocus is of great behavioral, perceptual, and biological importance, it is unknown how biological systems estimate defocus. Given a set of natural scenes and the properties of the vision system, we show from first principles how to optimally estimate defocus at each location in any individual image. We show for the human visual system that high-precision, unbiased estimates are obtainable under natural viewing conditions for patches with detectable contrast. The high quality of the estimates is surprising given the heterogeneity of natural images. Additionally, we quantify the degree to which the sign ambiguity often attributed to defocus is resolved by monochromatic aberrations (other than defocus) and chromatic aberrations; chromatic aberrations fully resolve the sign ambiguity. Finally, we show that simple spatial and spatio-chromatic receptive fields extract the information optimally. The approach can be tailored to any environment–vision system pairing: natural or man-made, animal or machine. Thus...

Extensive divergence of yeast stress responses through transitions between induced and constitutive activation

Tirosh, Itay; Wong, Koon Ho; Barkai, Naama; Struhl, Kevin
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Closely related species show a high degree of differences in gene expression, but the functional significance of these differences remains unclear. Similarly, stress responses in yeast typically involve differential expression of numerous genes, and it is unclear how many of these are functionally significant. To address these issues, we compared the expression programs of four yeast species under different growth conditions, and found that the response of these species to stress has diverged extensively. On an individual gene basis, most transcriptional responses are not conserved in any pair of species, and there are very limited common responses among all four species. We present evidence that many evolutionary changes in stress responses are compensated either (i) by the response of related genes or (ii) by changes in the basal expression levels of the genes whose responses have diverged. Thus, stress-related genes are often induced upon stress in some species but maintain high levels even in the absence of stress at other species, indicating a transition between induced and constitutive activation. In addition, ∼15% of the stress responses are specific to only one of the four species, with no evidence for compensating effects or stress-related annotations...

Solar hydrogen-producing bionanodevice outperforms natural photosynthesis

Lubner, Carolyn E.; Applegate, Amanda M.; Knörzer, Philipp; Ganago, Alexander; Bryant, Donald A.; Happe, Thomas; Golbeck, John H.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Although a number of solar biohydrogen systems employing photosystem I (PSI) have been developed, few attain the electron transfer throughput of oxygenic photosynthesis. We have optimized a biological/organic nanoconstruct that directly tethers FB, the terminal [4Fe-4S] cluster of PSI from Synechococcus sp. PCC 7002, to the distal [4Fe-4S] cluster of the [FeFe]-hydrogenase (H2ase) from Clostridium acetobutylicum. On illumination, the PSI–[FeFe]-H2ase nanoconstruct evolves H2 at a rate of 2,200 ± 460 μmol mg chlorophyll-1 h-1, which is equivalent to 105 ± 22 e-PSI-1 s-1. Cyanobacteria evolve O2 at a rate of approximately 400 μmol mg chlorophyll-1 h-1, which is equivalent to 47 e-PSI-1 s-1, given a PSI to photosystem II ratio of 1.8. The greater than twofold electron throughput by this hybrid biological/organic nanoconstruct over in vivo oxygenic photosynthesis validates the concept of tethering proteins through their redox cofactors to overcome diffusion-based rate limitations on electron transfer.

Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders

Nordahl, Christine Wu; Lange, Nicholas; Li, Deana D.; Barnett, Lou Ann; Lee, Aaron; Buonocore, Michael H.; Simon, Tony J.; Rogers, Sally; Ozonoff, Sally; Amaral, David G.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Autism is a heterogeneous disorder with multiple behavioral and biological phenotypes. Accelerated brain growth during early childhood is a well-established biological feature of autism. Onset pattern, i.e., early onset or regressive, is an intensely studied behavioral phenotype of autism. There is currently little known, however, about whether, or how, onset status maps onto the abnormal brain growth. We examined the relationship between total brain volume and onset status in a large sample of 2- to 4-y-old boys and girls with autism spectrum disorder (ASD) [n = 53, no regression (nREG); n = 61, regression (REG)] and a comparison group of age-matched typically developing controls (n = 66). We also examined retrospective head circumference measurements from birth through 18 mo of age. We found that abnormal brain enlargement was most commonly found in boys with regressive autism. Brain size in boys without regression did not differ from controls. Retrospective head circumference measurements indicate that head circumference in boys with regressive autism is normal at birth but diverges from the other groups around 4–6 mo of age. There were no differences in brain size in girls with autism (n = 22, ASD; n = 24, controls). These results suggest that there may be distinct neural phenotypes associated with different onsets of autism. For boys with regressive autism...

Classification of protein functional surfaces using structural characteristics

Tseng, Yan Yuan; Li, Wen-Hsiung
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Protein structure and function are closely related, especially in functional surfaces, which are local spatial regions that perform the biological functions. Also, protein structures tend to evolve more slowly than amino acid sequences. We have therefore developed a method to classify proteins using the structures of functional surfaces; we call it protein surface classification (PSC). PSC may reflect functional relationships among proteins and may detect evolutionary relationships among highly divergent sequences. We focused on the surfaces of ligand-bound regions because they represent well-defined structures. Specifically, we used structural attributes to measure similarities between binding surfaces and constructed a PSC library of ∼2,000 binding surface types from the bound forms. Using flavin mononucleotide-binding proteins and glycosidases as examples, we show how the evolutionary position of an uncharacterized protein can be defined and its function inferred from the characterized members of the same surface subtype. We found that proteins with the same enzyme nomenclature may be divided into subtypes and that two proteins in the same CATH (Class, Architecture, Topology, Homologous superfamily) fold may belong to two different surface types. In conclusion...

Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation

Karl, David M.; Church, Matthew J.; Dore, John E.; Letelier, Ricardo M.; Mahaffey, Claire
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
The atmospheric and deep sea reservoirs of carbon dioxide are linked via physical, chemical, and biological processes. The last of these include photosynthesis, particle settling, and organic matter remineralization, and are collectively termed the “biological carbon pump.” Herein, we present results from a 13-y (1992–2004) sediment trap experiment conducted in the permanently oligotrophic North Pacific Subtropical Gyre that document a large, rapid, and predictable summertime (July 15–August 15) pulse in particulate matter export to the deep sea (4,000 m). Peak daily fluxes of particulate matter during the summer export pulse (SEP) average 408, 283, 24.1, 1.1, and 67.5 μmol·m−2·d−1 for total carbon, organic carbon, nitrogen, phosphorus (PP), and biogenic silica, respectively. The SEP is approximately threefold greater than mean wintertime particle fluxes and fuels more efficient carbon sequestration because of low remineralization during downward transit that leads to elevated total carbon/PP and organic carbon/PP particle stoichiometry (371:1 and 250:1, respectively). Our long-term observations suggest that seasonal changes in the microbial assemblage, namely, summertime increases in the biomass and productivity of symbiotic nitrogen-fixing cyanobacteria in association with diatoms...

Highly neurotoxic monomeric α-helical prion protein

Zhou, Minghai; Ottenberg, Gregory; Sferrazza, Gian Franco; Lasmézas, Corinne Ida
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Prion diseases are infectious and belong to the group of protein misfolding neurodegenerative diseases. In these diseases, neuronal dysfunction and death are caused by the neuronal toxicity of a particular misfolded form of their cognate protein. The ability to specifically target the toxic protein conformer or the neuronal death pathway would provide powerful therapeutic approaches to these diseases. The neurotoxic forms of the prion protein (PrP) have yet to be defined but there is evidence suggesting that at least some of them differ from infectious PrP (PrPSc). Herein, without making an assumption about size or conformation, we searched for toxic forms of recombinant PrP after dilution refolding, size fractionation, and systematic biological testing of all fractions. We found that the PrP species most neurotoxic in vitro and in vivo (toxic PrP, TPrP) is a monomeric, highly α-helical form of PrP. TPrP caused autophagy, apoptosis, and a molecular signature remarkably similar to that observed in the brains of prion-infected animals. Interestingly, highly α-helical intermediates have been described for other amyloidogenic proteins but their biological significance remains to be established. We provide unique experimental evidence that a monomeric α-helical form of an amyloidogenic protein represents a cytotoxic species. Although toxic PrP has yet to be purified from prion-infected brains...

Integrated cross-species transcriptional network analysis of metastatic susceptibility

Hu, Ying; Wu, Gang; Rusch, Michael; Lukes, Luanne; Buetow, Kenneth H.; Zhang, Jinghui; Hunter, Kent W.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Metastatic disease is the proximal cause of mortality for most cancers and remains a significant problem for the clinical management of neoplastic disease. Recent advances in global transcriptional analysis have enabled better prediction of individuals likely to progress to metastatic disease. However, minimal overlap between predictive signatures has precluded easy identification of key biological processes contributing to the prometastatic transcriptional state. To overcome this limitation, we have applied network analysis to two independent human breast cancer datasets and three different mouse populations developed for quantitative analysis of metastasis. Analysis of these datasets revealed that the gene membership of the networks is highly conserved within and between species, and that these networks predicted distant metastasis free survival. Furthermore these results suggest that susceptibility to metastatic disease is cell-autonomous in estrogen receptor-positive tumors and associated with the mitotic spindle checkpoint. In contrast, nontumor genetics and pathway activities-associated stromal biology are significant modifiers of the rate of metastatic spread of estrogen receptor-negative tumors. These results suggest that the application of network analysis across species may provide a robust method to identify key biological programs associated with human cancer progression.

A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice

Ding, Jihua; Lu, Qing; Ouyang, Yidan; Mao, Hailiang; Zhang, Pingbo; Yao, Jialing; Xu, Caiguo; Li, Xianghua; Xiao, Jinghua; Zhang, Qifa
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Hybrid rice has greatly contributed to the global increase of rice productivity. A major component that facilitated the development of hybrids was a mutant showing photoperiod-sensitive male sterility (PSMS) with its fertility regulated by day length. Transcriptome studies have shown that large portions of the eukaryotic genomic sequences are transcribed to long noncoding RNAs (lncRNAs). However, the potential roles for only a few lncRNAs have been brought to light at present. Thus, great efforts have to be invested to understand the biological functions of lncRNAs. Here we show that a lncRNA of 1,236 bases in length, referred to as long-day–specific male-fertility–associated RNA (LDMAR), regulates PSMS in rice. We found that sufficient amount of the LDMAR transcript is required for normal pollen development of plants grown under long-day conditions. A spontaneous mutation causing a single nucleotide polymorphism (SNP) between the wild-type and mutant altered the secondary structure of LDMAR. This change brought about increased methylation in the putative promoter region of LDMAR, which reduced the transcription of LDMAR specifically under long-day conditions, resulting in premature programmed cell death (PCD) in developing anthers...

The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation

Gao, Mu; Skolnick, Jeffrey
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Protein-protein and protein-ligand interactions are ubiquitous in a biological cell. Here, we report a comprehensive study of the distribution of protein-ligand interaction sites, namely ligand-binding pockets, around protein-protein interfaces where protein-protein interactions occur. We inspected a representative set of 1,611 representative protein-protein complexes and identified pockets with a potential for binding small molecule ligands. The majority of these pockets are within a 6 Å distance from protein interfaces. Accordingly, in about half of ligand-bound protein-protein complexes, amino acids from both sides of a protein interface are involved in direct contacts with at least one ligand. Statistically, ligands are closer to a protein-protein interface than a random surface patch of the same solvent accessible surface area. Similar results are obtained in an analysis of the ligand distribution around domain-domain interfaces of 1,416 nonredundant, two-domain protein structures. Furthermore, comparable sized pockets as observed in experimental structures are present in artificially generated protein complexes, suggesting that the prominent appearance of pockets around protein interfaces is mainly a structural consequence of protein packing and thus...

Antiproliferative small-molecule inhibitors of transcription factor LSF reveal oncogene addiction to LSF in hepatocellular carcinoma

Grant, Trevor J.; Bishop, Joshua A.; Christadore, Lisa M.; Barot, Girish; Chin, Hang Gyeong; Woodson, Sarah; Kavouris, John; Siddiq, Ayesha; Gredler, Rachel; Shen, Xue-Ning; Sherman, Jennifer; Meehan, Tracy; Fitzgerald, Kevin; Pradhan, Sriharsa; Briggs, L
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Despite the prevalence of HCC, there is no effective, systemic treatment. The transcription factor LSF is a promising protein target for chemotherapy; it is highly expressed in HCC patient samples and cell lines, and promotes oncogenesis in rodent xenograft models of HCC. Here, we identify small molecules that effectively inhibit LSF cellular activity. The lead compound, factor quinolinone inhibitor 1 (FQI1), inhibits LSF DNA-binding activity both in vitro, as determined by electrophoretic mobility shift assays, and in cells, as determined by ChIP. Consistent with such inhibition, FQI1 eliminates transcriptional stimulation of LSF-dependent reporter constructs. FQI1 also exhibits antiproliferative activity in multiple cell lines. In LSF-overexpressing cells, including HCC cells, cell death is rapidly induced; however, primary or immortalized hepatocytes are unaffected by treatment with FQI1. The highly concordant structure–activity relationship of a panel of 23 quinolinones strongly suggests that the growth inhibitory activity is due to a single biological target or family. Coupled with the striking agreement between the concentrations required for antiproliferative activity (GI50s) and for inhibition of LSF transactivation (IC50s)...

Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes

Kopek, Benjamin G.; Shtengel, Gleb; Xu, C. Shan; Clayton, David A.; Hess, Harald F.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Microscopic images of specific proteins in their cellular context yield important insights into biological processes and cellular architecture. The advent of superresolution optical microscopy techniques provides the possibility to augment EM with nanometer-resolution fluorescence microscopy to access the precise location of proteins in the context of cellular ultrastructure. Unfortunately, efforts to combine superresolution fluorescence and EM have been stymied by the divergent and incompatible sample preparation protocols of the two methods. Here, we describe a protocol that preserves both the delicate photoactivatable fluorescent protein labels essential for superresolution microscopy and the fine ultrastructural context of EM. This preparation enables direct 3D imaging in 500- to 750-nm sections with interferometric photoactivatable localization microscopy followed by scanning EM images generated by focused ion beam ablation. We use this process to “colorize” detailed EM images of the mitochondrion with the position of labeled proteins. The approach presented here has provided a new level of definition of the in vivo nature of organization of mitochondrial nucleoids, and we expect this straightforward method to be applicable to many other biological questions that can be answered by direct imaging.

Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA

Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context.

Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages

Krizman, Jennifer; Marian, Viorica; Shook, Anthony; Skoe, Erika; Kraus, Nina
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Bilingualism profoundly affects the brain, yielding functional and structural changes in cortical regions dedicated to language processing and executive function [Crinion J, et al. (2006) Science 312:1537–1540; Kim KHS, et al. (1997) Nature 388:171–174]. Comparatively, musical training, another type of sensory enrichment, translates to expertise in cognitive processing and refined biological processing of sound in both cortical and subcortical structures. Therefore, we asked whether bilingualism can also promote experience-dependent plasticity in subcortical auditory processing. We found that adolescent bilinguals, listening to the speech syllable [da], encoded the stimulus more robustly than age-matched monolinguals. Specifically, bilinguals showed enhanced encoding of the fundamental frequency, a feature known to underlie pitch perception and grouping of auditory objects. This enhancement was associated with executive function advantages. Thus, through experience-related tuning of attention, the bilingual auditory system becomes highly efficient in automatically processing sound. This study provides biological evidence for system-wide neural plasticity in auditory experts that facilitates a tight coupling of sensory and cognitive functions.

Superresolution imaging of HIV in infected cells with FlAsH-PALM

Lelek, Mickaël; Di Nunzio, Francesca; Henriques, Ricardo; Charneau, Pierre; Arhel, Nathalie; Zimmer, Christophe
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Imaging protein assemblies at molecular resolution without affecting biological function is a long-standing goal. The diffraction-limited resolution of conventional light microscopy (∼200–300 nm) has been overcome by recent superresolution (SR) methods including techniques based on accurate localization of molecules exhibiting stochastic fluorescence; however, SR methods still suffer important restrictions inherent to the protein labeling strategies. Antibody labels are encumbered by variable specificity, limited commercial availability and affinity, and are mostly restricted to fixed cells. Fluorescent protein fusions, though compatible with live cell imaging, substantially increase protein size and can interfere with their biological activity. We demonstrate SR imaging of proteins tagged with small tetracysteine motifs and the fluorescein arsenical helix binder (FlAsH-PALM). We applied FlAsH-PALM to image the integrase enzyme (IN) of HIV in fixed and living cells under experimental conditions that fully preserved HIV infectivity. The obtained resolution (∼30 nm) allowed us to characterize the distribution of IN within virions and intracellular complexes and to distinguish different HIV structural populations based on their morphology. We could thus discriminate ∼100 nm long mature conical cores from immature Gag shells and observe that in infected cells cytoplasmic (but not nuclear) IN complexes display a morphology similar to the conical capsid. Together with the presence of capsid proteins...

In vivo excitation of nanoparticles using luminescent bacteria

Dragavon, Joe; Blazquez, Samantha; Rekiki, Abdessalem; Samson, Chelsea; Theodorou, Ioanna; Rogers, Kelly L.; Tournebize, Régis; Shorte, Spencer L.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
The lux operon derived from Photorhabdus luminescens incorporated into bacterial genomes, elicits the production of biological chemiluminescence typically centered on 490 nm. The light-producing bacteria are widely used for in vivo bioluminescence imaging. However, in living samples, a common difficulty is the presence of blue-green absorbers such as hemoglobin. Here we report a characterization of fluorescence by unbound excitation from luminescence, a phenomenon that exploits radiating luminescence to excite nearby fluorophores by epifluorescence. We show that photons from bioluminescent bacteria radiate over mesoscopic distances and induce a red-shifted fluorescent emission from appropriate fluorophores in a manner distinct from bioluminescence resonance energy transfer. Our results characterizing fluorescence by unbound excitation from luminescence, both in vitro and in vivo, demonstrate how the resulting blue-to-red wavelength shift is both necessary and sufficient to yield contrast enhancement revealing mesoscopic proximity of luminescent and fluorescent probes in the context of living biological tissues.

Self-assembly of tunable protein suprastructures from recombinant oleosin

Vargo, Kevin B.; Parthasarathy, Ranganath; Hammer, Daniel A.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Using recombinant amphiphilic proteins to self-assemble suprastructures would allow precise control over surfactant chemistry and the facile incorporation of biological functionality. We used cryo-TEM to confirm self-assembled structures from recombinantly produced mutants of the naturally occurring sunflower protein, oleosin. We studied the phase behavior of protein self-assembly as a function of solution ionic strength and protein hydrophilic fraction, observing nanometric fibers, sheets, and vesicles. Vesicle membrane thickness correlated with increasing hydrophilic fraction for a fixed hydrophobic domain length. The existence of a bilayer membrane was corroborated in giant vesicles through the localized encapsulation of hydrophobic Nile red and hydrophilic calcein. Circular dichroism revealed that changes in nanostructural morphology in this family of mutants was unrelated to changes in secondary structure. Ultimately, we envision the use of recombinant techniques to introduce novel functionality into these materials for biological applications.

Preparation of unnatural N-to-N and C-to-C protein fusions

Witte, Martin D.; Cragnolini, Juan J.; Dougan, Stephanie K.; Yoder, Nicholas C.; Popp, Maximilian W.; Ploegh, Hidde L.
Fonte: National Academy of Sciences Publicador: National Academy of Sciences
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
45.8%
Standard genetic approaches allow the production of protein composites by fusion of polypeptides in head-to-tail fashion. Some applications would benefit from constructions that are genetically impossible, such as the site-specific linkage of proteins via their N or C termini, when a remaining free terminus is required for biological activity. We developed a method for the production of N-to-N and C-to-C dimers, with full retention of the biological activity of both fusion partners and without inflicting chemical damage on the proteins to be joined. We use sortase A to install on the N or C terminus of proteins of interest the requisite modifications to execute a strain-promoted copper-free cycloaddition and show that the ensuing ligation proceeds efficiently. Applied here to protein–protein fusions, the method reported can be extended to connecting proteins with any entity of interest.