Página 1 dos resultados de 2575 itens digitais encontrados em 0.057 segundos

The ARG1-LIKE2 Gene of Arabidopsis Functions in a Gravity Signal Transduction Pathway That Is Genetically Distinct from the PGM Pathway1

Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.
Fonte: The American Society for Plant Biologists Publicador: The American Society for Plant Biologists
Tipo: Artigo de Revista Científica
Publicado em /09/2003 Português
Relevância na Pesquisa
98.48947%
The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings...

Dehydroascorbate Uptake Activity Correlates with Cell Growth and Cell Division of Tobacco Bright Yellow-2 Cell Cultures

Horemans, Nele; Potters, Geert; De Wilde, Leen; Caubergs, Roland J.
Fonte: The American Society for Plant Biologists Publicador: The American Society for Plant Biologists
Tipo: Artigo de Revista Científica
Publicado em /09/2003 Português
Relevância na Pesquisa
87.87886%
Recently, ascorbate (ASC) concentration and the activity of a number of enzymes from the ASC metabolism have been proven to correlate with differences in growth or cell cycle progression. Here, a possible correlation between growth and the activity of a plasma membrane dehydroascorbate (DHA) transporter was investigated. Protoplasts were isolated from a tobacco (Nicotiana tabacum) Bright Yellow-2 cell culture at different intervals after inoculation and the activity of DHA transport was tested with 14C-labeled ASC. Ferricyanide (1 mm) or dithiothreitol (1 mm) was included in the test to keep the external 14C-ASC in its oxidized respectively reduced form. Differential uptake activity was observed, correlating with growth phases of the cell culture. Uptake of DHA in cells showed a peak in exponential growth phase, whereas uptake in the presence of dithiothreitol did not. The enhanced DHA uptake was not due to higher endogenous ASC levels that are normally present in exponential phase because preloading of protoplasts of different ages did not affect DHA uptake. Preloading was achieved by incubating cells before protoplastation for 4 h in a medium supplemented with 1 mm DHA. In addition to testing cells at different growth phases, uptake of DHA into the cells was also followed during the cell cycle. An increase in uptake activity was observed during M phase and the M/G1 transition. These experiments are the first to show that DHA transport activity into plant cells differs with cell growth. The relevance of the data to the action of DHA and ASC in cell growth will be discussed.

Expression of Arabidopsis γ-Tubulin in Fission Yeast Reveals Conserved and Novel Functions of γ-Tubulin1

Horio, Tetsuya; Oakley, Berl R.
Fonte: The American Society for Plant Biologists Publicador: The American Society for Plant Biologists
Tipo: Artigo de Revista Científica
Publicado em /12/2003 Português
Relevância na Pesquisa
87.66226%
γ-Tubulin localizes to microtubule-organizing centers in animal and fungal cells where it is important for microtubule nucleation. Plant cells do not have morphologically defined microtubule organizing centers, however, and γ-tubulin is distributed in small, discrete structures along microtubules. The great difference in distribution has prompted speculation that plant γ-tubulins function differently from animal and fungal γ-tubulins. We tested this possibility by expressing Arabidopsis γ-tubulin in the fission yeast Schizosaccharomyces pombe. At high temperatures, the plant γ-tubulin was able to bind to microtubule-organizing centers, nucleate microtubule assembly, and support the growth and replication of S. pombe cells lacking endogenous γ-tubulin. However, the distribution of microtubules was abnormal as was cell morphology, and at low temperatures, cells were arrested in mitosis. These results reveal that Arabidopsis γ-tubulin can carry out essential functions in S. pombe and is, thus, functionally conserved. The morphological abnormalities reveal that it cannot carry out some nonessential functions, however, and they underscore the importance of γ-tubulin in morphogenesis of fission yeast cells and in maintaining normal interphase microtubule arrays.

The D816V Mutation of c-Kit Circumvents a Requirement for Src Family Kinases in c-Kit Signal Transduction*

Sun, Jianmin; Pedersen, Malin; Rönnstrand, Lars
Fonte: American Society for Biochemistry and Molecular Biology Publicador: American Society for Biochemistry and Molecular Biology
Tipo: Artigo de Revista Científica
Publicado em 24/04/2009 Português
Relevância na Pesquisa
78.315957%
The receptor tyrosine kinase c-Kit plays a critical role in hematopoiesis, and gain-of-function mutations of the receptor are frequently seen in several malignancies, including acute myeloid leukemia, gastrointestinal stromal tumors, and testicular carcinoma. The most common mutation of c-Kit in these disorders is a substitution of the aspartic acid residue in position 816 to a valine (D816V), leading to constitutive activation of the receptor. In this study, we aimed to investigate the role of Src family kinases in c-Kit/D816V signaling. Src family kinases are necessary for the phosphorylation of wild-type c-Kit as well as of activation of downstream signaling pathways including receptor ubiquitination and the Ras/Mek/Erk pathway. Our data demonstrate that, unlike wild-type c-Kit, the phosphorylation of c-Kit/D816V is not dependent on Src family kinases. In addition, we found that neither receptor ubiquitination nor Erk activation by c-Kit/D816V required activation of Src family kinases. In vitro kinase assay using synthetic peptides revealed that c-Kit/D816V had an altered substrate specificity resembling Src and Abl tyrosine kinases. We further present evidence that, in contrast to wild-type c-Kit, Src family kinases are dispensable for c-Kit/D816V cell survival...

LFA-1 Regulates CD8+ T Cell Activation via T Cell Receptor-mediated and LFA-1-mediated Erk1/2 Signal Pathways*

Li, Dan; Molldrem, Jeffrey J.; Ma, Qing
Fonte: American Society for Biochemistry and Molecular Biology Publicador: American Society for Biochemistry and Molecular Biology
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
88.73686%
LFA-1 regulates T cell activation and signal transduction through the immunological synapse. T cell receptor (TCR) stimulation rapidly activates LFA-1, which provides unique LFA-1-dependent signals to promote T cell activation. However, the detailed molecular pathways that regulate these processes and the precise mechanism by which LFA-1 contributes to TCR activation remain unclear. We found LFA-1 directly participates in Erk1/2 signaling upon TCR stimulation in CD8+ T cells. The presence of LFA-1, not ligand binding, is required for the TCR-mediated Erk1/2 signal pathway. LFA-1-deficient T cells have defects in sustained Erk1/2 signaling and TCR/CD3 clustering, which subsequently prevents MTOC reorientation, cell cycle progression, and mitosis. LFA-1 regulates the TCR-mediated Erk1/2 signal pathway in the context of immunological synapse for recruitment and amplification of the Erk1/2 signal. In addition, LFA-1 ligation with ICAM-1 generates an additional Erk1/2 signal, which synergizes with the existing TCR-mediated Erk1/2 signal to enhance T cell activation. Thus, LFA-1 contributes to CD8+ T cell activation through two distinct signal pathways. We demonstrated that the function of LFA-1 is to enhance TCR signaling through the immunological synapse and deliver distinct signals in CD8+ T cell activation.

Homodimerization Is Essential for the Receptor for Advanced Glycation End Products (RAGE)-mediated Signal Transduction*

Zong, Hongliang; Madden, Angelina; Ward, Micheal; Mooney, Mark H.; Elliott, Christopher T.; Stitt, Alan W.
Fonte: American Society for Biochemistry and Molecular Biology Publicador: American Society for Biochemistry and Molecular Biology
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
78.535854%
The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that binds to diverse ligands and initiates a downstream proinflammatory signaling cascade. RAGE activation has been linked to diabetic complications, Alzheimer disease, infections, and cancers. RAGE is known to mediate cell signaling and downstream proinflammatory gene transcription activation, although the precise mechanism surrounding receptor-ligand interactions is still being elucidated. Recent fluorescence resonance energy transfer evidence indicates that RAGE may form oligomers on the cell surface and that this could be related to signal transduction. To investigate whether RAGE forms oligomers, protein-protein interaction assays were carried out. Here, we demonstrate the interaction between RAGE molecules via their N-terminal V domain, which is an important region involved in ligand recognition. By protein cross-linking using water-soluble and membrane-impermeable cross-linker bis(sulfosuccinimidyl) suberate and nondenaturing gels, we show that RAGE forms homodimers at the plasma membrane, a process potentiated by S100B and advanced glycation end products. Soluble RAGE, the RAGE inhibitor, is also capable of binding to RAGE, similar to V peptide...

Maspin Regulates Endothelial Cell Adhesion and Migration through an Integrin Signaling Pathway*

Qin, Li; Zhang, Ming
Fonte: American Society for Biochemistry and Molecular Biology Publicador: American Society for Biochemistry and Molecular Biology
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
78.5982%
Maspin has been identified as a potent angiogenesis inhibitor. However, the molecular mechanism responsible for its anti-angiogenic property is unclear. In this study, we examined the effect of maspin on endothelial cell (EC) adhesion and migration in a cell culture system. We found that maspin was expressed in blood vessels ECs and human umbilical vein endothelial cells (HUVECs). Maspin significantly enhanced HUVEC cell adhesion to various matrix proteins. This effect was dependent on the activation of integrin β1, which subsequently led to distribution pattern changes of vinculin and F-actin. These results indicated that maspin affects cell adhesion and cytoskeleton reorganization through an integrin signal transduction pathway. Analysis of HUVECs following maspin treatment revealed increased integrin-linked kinase activities and phosphorylated FAK levels, consistent with increased cell adhesion. Interestingly, when HUVECs were induced to migrate by migration stimulatory factor bFGF, active Rac1 and cdc42 small GTPase levels were decreased dramatically at 30 min following maspin treatment. Using phosphorylated FAK at Tyr397 as an indicator of focal adhesion disassembly, maspin-treated HUVECs had elevated FAK phosphorylation compared with the mock treated control. The results were a reduction in focal adhesion disassembly and the retardation in EC migration. This study uncovers a mechanism by which maspin exerts its effect on EC adhesion and migration through an integrin signal transduction pathway.

Na+/H+ Exchanger Regulatory Factor-1 Is Involved in Chemokine Receptor Homodimer CCR5 Internalization and Signal Transduction but Does Not Affect CXCR4 Homodimer or CXCR4-CCR5 Heterodimer*

Hammad, Maha M.; Kuang, Yi-Qun; Yan, Ronald; Allen, Heather; Dupré, Denis J.
Fonte: American Society for Biochemistry and Molecular Biology Publicador: American Society for Biochemistry and Molecular Biology
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
88.31809%
Chemokine receptors are members of the G protein-coupled receptor (GPCR) family. CCR5 is also the principal co-receptor for macrophage-tropic strains of human immunodeficiency virus, type 1 (HIV-1), and efforts have been made to develop ligands to inhibit HIV-1 infection by promoting CCR5 receptor endocytosis. Given the nature of GPCRs and their propensity to form oligomers, one can consider ligand-based therapies as unselective in terms of the oligomeric composition of complexes. For example, a ligand targeting a CCR5 homomer could likely induce signal transduction on a heteromeric CCR5-CXCR4. Other avenues could therefore be explored. We identified a receptor adaptor interacting specifically with one receptor complex but not others. NHERF1, an adaptor known for its role in desensitization, internalization, and regulation of the ERK signaling cascade for several GPCRs, interacts via its PDZ2 domain with the CCR5 homodimer but not with the CXCR4-CCR5 heterodimer or CXCR4 homodimer. To further characterize this interaction, we also show that NHERF1 increases the CCR5 recruitment of arrestin2 following stimulation. NHERF1 is also involved in CCR5 internalization, as we demonstrate that co-expression of constructs bearing the PDZ2 domain can block CCR5 internalization. We also show that NHERF1 potentiates RANTES (regulated on activation normal T cell expressed and secreted)-induced ERK1/2 phosphorylation via CCR5 activation and that this activation requires NHERF1 but not arrestin2. Taken together...

Allosteric Modulation of Ras-GTP Is Linked to Signal Transduction through RAF Kinase*

Buhrman, Greg; Kumar, V. S. Senthil; Cirit, Murat; Haugh, Jason M.; Mattos, Carla
Fonte: American Society for Biochemistry and Molecular Biology Publicador: American Society for Biochemistry and Molecular Biology
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
78.315957%
Ras is a key signal transduction protein in the cell. Mutants of Gly12 and Gln61 impair GTPase activity and are found prominently in cancers. In wild type Ras-GTP, an allosteric switch promotes disorder to order transition in switch II, placing Gln61 in the active site. We show that the “on” and “off” conformations of the allosteric switch can also be attained in RasG12V and RasQ61L. Although both mutants have similarly impaired active sites in the on state, RasQ61L stabilizes an anti-catalytic conformation of switch II in the off state of the allosteric switch when bound to Raf. This translates into more potent activation of the MAPK pathway involving Ras, Raf kinase, MEK, and ERK (Ras/Raf/MEK/ERK) in cells transfected with RasQ61L relative to RasG12V. This differential is not observed in the Raf-independent pathway involving Ras, phosphoinositide 3-kinase (PI3K), and Akt (Ras/PI3K/Akt). Using a combination of structural analysis, hydrolysis rates, and experiments in NIH-3T3 cells, we link the allosteric switch to the control of signaling in the Ras/Raf/MEK/ERK pathway, supporting a GTPase-activating protein-independent model for duration of the Ras-Raf complex.

From Molecular Details of the Interplay between Transmembrane Helices of the Thyrotropin Receptor to General Aspects of Signal Transduction in Family A G-protein-coupled Receptors (GPCRs)*

Kleinau, Gunnar; Hoyer, Inna; Kreuchwig, Annika; Haas, Ann-Karin; Rutz, Claudia; Furkert, Jens; Worth, Catherine L.; Krause, Gerd; Schülein, Ralf
Fonte: American Society for Biochemistry and Molecular Biology Publicador: American Society for Biochemistry and Molecular Biology
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
78.48947%
Transmembrane helices (TMHs) 5 and 6 are known to be important for signal transduction by G-protein-coupled receptors (GPCRs). Our aim was to characterize the interface between TMH5 and TMH6 of the thyrotropin receptor (TSHR) to gain molecular insights into aspects of signal transduction and regulation. A proline at TMH5 position 5.50 is highly conserved in family A GPCRs and causes a twist in the helix structure. Mutation of the TSHR-specific alanine (Ala-5935.50) at this position to proline resulted in a 20-fold reduction of cell surface expression. This indicates that TMH5 in the TSHR might have a conformation different from most other family A GPCRs by forming a regular α-helix. Furthermore, linking our own and previous data from directed mutagenesis with structural information led to suggestions of distinct pairs of interacting residues between TMH5 and TMH6 that are responsible for stabilizing either the basal or the active state. Our insights suggest that the inactive state conformation is constrained by a core set of polar interactions among TMHs 2, 3, 6, and 7 and in contrast that the active state conformation is stabilized mainly by non-polar interactions between TMHs 5 and 6. Our findings might be relevant for all family A GPCRs as supported by a statistical analysis of residue properties between the TMHs of a vast number of GPCR sequences.

Extracellular Nucleotides and Apyrases Regulate Stomatal Aperture in Arabidopsis1[W][OA]

Clark, Greg; Fraley, Devin; Steinebrunner, Iris; Cervantes, Andrew; Onyirimba, James; Liu, Angela; Torres, Jonathan; Tang, Wenqiang; Kim, Joshua; Roux, Stanley J.
Fonte: American Society of Plant Biologists Publicador: American Society of Plant Biologists
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
87.78856%
This study investigates the role of extracellular nucleotides and apyrase enzymes in regulating stomatal aperture. Prior data indicate that the expression of two apyrases in Arabidopsis (Arabidopsis thaliana), APY1 and APY2, is strongly correlated with cell growth and secretory activity. Both are expressed strongly in guard cell protoplasts, as determined by reverse transcription-polymerase chain reaction and immunoblot analyses. Promoter activity assays for APY1 and APY2 show that expression of both apyrases correlates with conditions that favor stomatal opening. Correspondingly, immunoblot data indicate that APY expression in guard cell protoplasts rises quickly when these cells are moved from darkness into light. Both short-term inhibition of ectoapyrase activity by polyclonal antibodies and long-term suppression of APY1 and APY2 transcript levels significantly disrupt normal stomatal behavior in light. Stomatal aperture shows a biphasic response to applied adenosine 5′-[γ-thio]triphosphate (ATPγS) or adenosine 5′-[β-thio] diphosphate, with lower concentrations inducing stomatal opening and higher concentrations inducing closure. Equivalent concentrations of adenosine 5′-O-thiomonophosphate have no effect on aperture. Two mammalian purinoceptor inhibitors block ATPγS- and adenosine 5′-[β-thio] diphosphate-induced opening and closing and also partially block the ability of abscisic acid to induce stomatal closure and of light to induce stomatal opening. Treatment of epidermal peels with ATPγS induces increased levels of nitric oxide and reactive oxygen species...

Nuclear Localization and Interaction with COP1 Are Required for STO/BBX24 Function during Photomorphogenesis1[W]

Yan, Huili; Marquardt, Katrin; Indorf, Martin; Jutt, Dominic; Kircher, Stefan; Neuhaus, Gunther; Rodríguez-Franco, Marta
Fonte: American Society of Plant Biologists Publicador: American Society of Plant Biologists
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
88.04029%
Arabidopsis (Arabidopsis thaliana) SALT TOLERANCE/B-BOX ZINC FINGER PROTEIN24 (STO/BBX24) is a negative regulator of the light signal transduction that localizes to the nucleus of plant cells and interacts with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in the yeast (Saccharomyces cerevisiae) two-hybrid system. The protein contains two B-box zinc-finger motives at the N terminus and a conserved motif at the C-terminal part required for the interaction with COP1. BBX24 accumulates during deetiolation of young seedlings in the first hours of exposure to light. However, this accumulation is transient and decreases after prolonged light irradiation. Here, we identified the amino acidic residues necessary for the nuclear import of the protein. In addition, we created mutated forms of the protein, and analyzed them by overexpression in the bbx24-1 mutant background. Our results indicate that the degradation of BBX24 occurs, or at least is initiated in the nucleus, and this nuclear localization is a prerequisite to fulfill its function in light signaling. Moreover, mutations in the region responsible for the interaction with COP1 revealed that a physical interaction of the proteins is also required for degradation of BBX24 in the light and for normal photomorphogenesis.

Altering Trehalose-6-Phosphate Content in Transgenic Potato Tubers Affects Tuber Growth and Alters Responsiveness to Hormones during Sprouting1[C][W]

Debast, Stefan; Nunes-Nesi, Adriano; Hajirezaei, Mohammad R.; Hofmann, Jörg; Sonnewald, Uwe; Fernie, Alisdair R.; Börnke, Frederik
Fonte: American Society of Plant Biologists Publicador: American Society of Plant Biologists
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
87.73391%
Trehalose-6-phosphate (T6P) is a signaling metabolite that regulates carbon metabolism, developmental processes, and growth in plants. In Arabidopsis (Arabidopsis thaliana), T6P signaling is, at least in part, mediated through inhibition of the SNF1-related protein kinase SnRK1. To investigate the role of T6P signaling in a heterotrophic, starch-accumulating storage organ, transgenic potato (Solanum tuberosum) plants with altered T6P levels specifically in their tubers were generated. Transgenic lines with elevated T6P levels (B33-TPS, expressing Escherichia coli osmoregulatory trehalose synthesis A [OtsA], which encodes a T6P synthase) displayed reduced starch content, decreased ATP contents, and increased respiration rate diagnostic for high metabolic activity. On the other hand, lines with significantly reduced T6P (B33-TPP, expressing E. coli OtsB, which encodes a T6P phosphatase) showed accumulation of soluble carbohydrates, hexose phosphates, and ATP, no change in starch when calculated on a fresh weight basis, and a strongly reduced tuber yield. [14C]Glucose feeding to transgenic tubers indicated that carbon partitioning between starch and soluble carbohydrates was not altered. Transcriptional profiling of B33-TPP tubers revealed that target genes of SnRK1 were strongly up-regulated and that T6P inhibited potato tuber SnRK1 activity in vitro. Among the SnRK1 target genes in B33-TPP tubers...

Cellulose Synthase-Like D1 Is Integral to Normal Cell Division, Expansion, and Leaf Development in Maize1[W][OA]

Hunter, Charles T.; Kirienko, Daniel Hill; Sylvester, Anne W.; Peter, Gary F.; McCarty, Donald R.; Koch, Karen E.
Fonte: American Society of Plant Biologists Publicador: American Society of Plant Biologists
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
87.90261%
The Cellulose Synthase-Like D (CslD) genes have important, although still poorly defined, roles in cell wall formation. Here, we show an unexpected involvement of CslD1 from maize (Zea mays) in cell division. Both division and expansion were altered in the narrow-organ and warty phenotypes of the csld1 mutants. Leaf width was reduced by 35%, due mainly to a 47% drop in the number of cell files across the blade. Width of other organs was also proportionally reduced. In leaf epidermis, the deficiency in lateral divisions was only partially compensated by a modest, uniform increase in cell width. Localized clusters of misdivided epidermal cells also led to the formation of warty lesions, with cell clusters bulging from the epidermal layer, and some cells expanding to volumes 75-fold greater than normal. The decreased cell divisions and localized epidermal expansions were not associated with detectable changes in the cell wall composition of csld1 leaf blades or epidermal peels, yet a greater abundance of thin, dense walls was indicated by high-resolution x-ray tomography of stems. Cell-level defects leading to wart formation were traced to sites of active cell division and expansion at the bases of leaf blades, where cytokinesis and cross-wall formation were disrupted. Flow cytometry confirmed a greater frequency of polyploid cells in basal zones of leaf blades...

Arabidopsis VILLIN2 and VILLIN3 Are Required for the Generation of Thick Actin Filament Bundles and for Directional Organ Growth[C][W]

van der Honing, Hannie S.; Kieft, Henk; Emons, Anne Mie C.; Ketelaar, Tijs
Fonte: American Society of Plant Biologists Publicador: American Society of Plant Biologists
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
87.77521%
In plant cells, actin filament bundles serve as tracks for myosin-dependent organelle movement and play a role in the organization of the cytoplasm. Although virtually all plant cells contain actin filament bundles, the role of the different actin-bundling proteins remains largely unknown. In this study, we investigated the role of the actin-bundling protein villin in Arabidopsis (Arabidopsis thaliana). We used Arabidopsis T-DNA insertion lines to generate a double mutant in which VILLIN2 (VLN2) and VLN3 transcripts are truncated. Leaves, stems, siliques, and roots of vln2 vln3 double mutant plants are twisted, which is caused by local differences in cell length. Microscopy analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin filament bundles are more abundant while thick actin filament bundles are virtually absent. In contrast to full-length VLN3, truncated VLN3 lacking the headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our results show that villin is involved in the generation of thick actin filament bundles in several cell types and suggest that these bundles are involved in the regulation of coordinated cell expansion.

The β-Subunit of the SnRK1 Complex Is Phosphorylated by the Plant Cell Death Suppressor Adi31[C][W][OA]

Avila, Julian; Gregory, Oliver G.; Su, Dongyin; Deeter, Taunya A.; Chen, Sixue; Silva-Sanchez, Cecilia; Xu, Shouling; Martin, Gregory B.; Devarenne, Timothy P.
Fonte: American Society of Plant Biologists Publicador: American Society of Plant Biologists
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
87.83547%
The protein kinase AvrPto-dependent Pto-interacting protein3 (Adi3) is a known suppressor of cell death, and loss of its function has been correlated with cell death induction during the tomato (Solanum lycopersicum) resistance response to its pathogen Pseudomonas syringae pv tomato. However, Adi3 downstream interactors that may play a role in cell death regulation have not been identified. We used a yeast two-hybrid screen to identify the plant SnRK1 (for Sucrose non-Fermenting-1-Related Protein Kinase1) protein as an Adi3-interacting protein. SnRK1 functions as a regulator of carbon metabolism and responses to biotic and abiotic stresses. SnRK1 exists in a heterotrimeric complex with a catalytic α-subunit (SnRK1), a substrate-interacting β-subunit, and a regulatory γ-subunit. Here, we show that Adi3 interacts with, but does not phosphorylate, the SnRK1 α-subunit. The ability of Adi3 to phosphorylate the four identified tomato β-subunits was also examined, and it was found that only the Galactose Metabolism83 (Gal83) β-subunit was phosphorylated by Adi3. This phosphorylation site on Gal83 was identified as serine-26 using a mutational approach and mass spectrometry. In vivo expression of Gal83 indicates that it contains multiple phosphorylation sites...

Dissecting Arabidopsis Gβ Signal Transduction on the Protein Surface1[W][OA]

Jiang, Kun; Frick-Cheng, Arwen; Trusov, Yuri; Delgado-Cerezo, Magdalena; Rosenthal, David M.; Lorek, Justine; Panstruga, Ralph; Booker, Fitzgerald L.; Botella, José Ramón; Molina, Antonio; Ort, Donald R.; Jones, Alan M.
Fonte: American Society of Plant Biologists Publicador: American Society of Plant Biologists
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
88.15149%
The heterotrimeric G-protein complex provides signal amplification and target specificity. The Arabidopsis (Arabidopsis thaliana) Gβ-subunit of this complex (AGB1) interacts with and modulates the activity of target cytoplasmic proteins. This specificity resides in the structure of the interface between AGB1 and its targets. Important surface residues of AGB1, which were deduced from a comparative evolutionary approach, were mutated to dissect AGB1-dependent physiological functions. Analysis of the capacity of these mutants to complement well-established phenotypes of Gβ-null mutants revealed AGB1 residues critical for specific AGB1-mediated biological processes, including growth architecture, pathogen resistance, stomata-mediated leaf-air gas exchange, and possibly photosynthesis. These findings provide promising new avenues to direct the finely tuned engineering of crop yield and traits.

Regulation of Plasmodesmatal Permeability and Stomatal Patterning by the Glycosyltransferase-Like Protein KOBITO11[W][OA]

Kong, Danyu; Karve, Rucha; Willet, Alaina; Chen, Ming-Kun; Oden, Jennifer; Shpak, Elena D.
Fonte: American Society of Plant Biologists Publicador: American Society of Plant Biologists
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
88.29365%
The differentiation of stomata provides a convenient model for studying pattern formation in plant tissues. Stomata formation is induced by a set of basic helix-loop-helix transcription factors and inhibited by a signal transduction pathway initiated by TOO MANY MOUTHS (TMM) and ERECTA family (ERf) receptors. The formation of a proper stomata pattern is also dependent upon the restriction of symplastic movement of basic helix-loop-helix transcription factors into neighboring cells, especially in the backgrounds where the function of the TMM/ERf signaling pathway is compromised. Here, we describe a novel mutant of KOBITO1 in Arabidopsis (Arabidopsis thaliana). The kob1-3 mutation leads to the formation of stomata clusters in the erl1 erl2 background but not in the wild type. Cell-to-cell mobility assays demonstrated an increase in intercellular protein trafficking in kob1-3, including increased diffusion of SPEECHLESS, suggesting that the formation of stomata clusters is due to an escape of cell fate-specifying factors from stomatal lineage cells. While plasmodesmatal permeability is increased in kob1-3, we did not detect drastic changes in callose accumulation at the neck regions of the plasmodesmata. Previously, KOBITO1 has been proposed to function in cellulose biosynthesis. Our data demonstrate that disruption of cellulose biosynthesis in the erl1 erl2 background does not lead to the formation of stomata clusters...

Complexes with Mixed Primary and Secondary Cellulose Synthases Are Functional in Arabidopsis Plants1[C][W]

Carroll, Andrew; Mansoori, Nasim; Li, Shundai; Lei, Lei; Vernhettes, Samantha; Visser, Richard G.F.; Somerville, Chris; Gu, Ying; Trindade, Luisa M.
Fonte: American Society of Plant Biologists Publicador: American Society of Plant Biologists
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
87.81293%
In higher plants, cellulose is synthesized by so-called rosette protein complexes with cellulose synthases (CESAs) as catalytic subunits of the complex. The CESAs are divided into two distinct families, three of which are thought to be specialized for the primary cell wall and three for the secondary cell wall. In this article, the potential of primary and secondary CESAs forming a functional rosette complex has been investigated. The membrane-based yeast two-hybrid and biomolecular fluorescence systems were used to assess the interactions between three primary (CESA1, CESA3, CESA6), and three secondary (CESA4, CESA7, CESA8) Arabidopsis (Arabidopsis thaliana) CESAs. The results showed that all primary CESAs can physically interact both in vitro and in planta with all secondary CESAs. Although CESAs are broadly capable of interacting in pairwise combinations, they are not all able to form functional complexes in planta. Analysis of transgenic lines showed that CESA7 can partially rescue defects in the primary cell wall biosynthesis in a weak cesa3 mutant. Green fluorescent protein-CESA protein fusions revealed that when CESA3 was replaced by CESA7 in the primary rosette, the velocity of the mixed complexes was slightly faster than the native primary complexes. CESA1 in turn can partly rescue defects in secondary cell wall biosynthesis in a cesa8ko mutant...

Quantitative proteomics reveals that plasma membrane microdomains from poplar cell suspension cultures are enriched in markers of signal transduction, molecular transport, and callose biosynthesis

Srivastava, V.; Malm, E.; Sundqvis, G.; Bulone, V.
Fonte: American Society for Biochemistry and Molecular Biology Publicador: American Society for Biochemistry and Molecular Biology
Tipo: Artigo de Revista Científica
Publicado em //2013 Português
Relevância na Pesquisa
88.57378%
The plasma membrane (PM) is a highly dynamic interface that contains detergent-resistant microdomains (DRMs). The aim of this work was to determine the main functions of such microdomains in poplar through a proteomic analysis using gel-based and solution (iTRAQ) approaches. A total of 80 proteins from a limited number of functional classes were found to be significantly enriched in DRM relative to PM. The enriched proteins are markers of signal transduction, molecular transport at the PM, or cell wall biosynthesis. Their intrinsic properties are presented and discussed together with the biological significance of their enrichment in DRM. Of particular importance is the significant and specific enrichment of several callose [(1 → 3)-β-glucan] synthase isoforms, whose catalytic activity represents a final response to stress, leading to the deposition of callose plugs at the surface of the PM. An integrated functional model that connects all DRM-enriched proteins identified is proposed. This report is the only quantitative analysis available to date of the protein composition of membrane microdomains from a tree species.; Vaibhav Srivastava, Erik Malm, Gustav Sundqvist, and Vincent Bulone