Página 1 dos resultados de 1 itens digitais encontrados em 0.011 segundos

Exact Skewness-Kurtosis Tests for Multivariate Normality and Goodness-of-fit in Multivariate Regressions with Application to Asset Pricing Models

DUFOUR, Jean-Marie; KHALAF, Lynda; BEAULIEU, Marie-Claude
Fonte: Université de Montréal Publicador: Université de Montréal
Tipo: Artigo de Revista Científica Formato: 225374 bytes; application/pdf
Português
Relevância na Pesquisa
80.898364%
We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.; Dans cet article, nous proposons des tests sur la forme de la distribution des erreurs dans un modèle de régression linéaire multivarié (RLM). Les tests que nous développons sont fonction des résidus obtenus par moindres carrés multivariés...